
15306-010000-5060 October 2001

Autodesk MapGuide® Release 6

Developer’s Guide

Copyright © 2001 Autodesk, Inc.
All Rights Reserved

AUTODESK, INC. MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, REGARDING THESE MATERIALS
AND MAKES SUCH MATERIALS AVAILABLE SOLELY ON AN “AS-IS” BASIS.

IN NO EVENT SHALL AUTODESK, INC. BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF PURCHASE OR USE OF THESE MATERIALS. THE
SOLE AND EXCLUSIVE LIABILITY TO AUTODESK, INC., REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED THE
PURCHASE PRICE OF THE MATERIALS DESCRIBED HEREIN.

Autodesk, Inc. reserves the right to revise and improve its products as it sees fit. This publication describes the state of this product
at the time of its publication, and may not reflect the product at all times in the future.

Autodesk Trademarks

The following are registered trademarks of Autodesk, Inc., in the USA and/or other countries: 3D Plan, 3D Props, 3D Studio, 3D
Studio MAX, 3D Studio VIZ, 3DSurfer, ActiveShapes, ActiveShapes (logo), Actrix, ADE, ADI, Advanced Modeling Extension, AEC
Authority (logo), AEC-X, AME, Animator Pro, Animator Studio, ATC, AUGI, AutoCAD, AutoCAD Data Extension, AutoCAD
Development System, AutoCAD LT, AutoCAD Map, Autodesk, Autodesk Animator, Autodesk (logo), Autodesk MapGuide,
Autodesk University, Autodesk View, Autodesk WalkThrough, Autodesk World, AutoLISP, AutoShade, AutoSketch, AutoSurf,
AutoVision, Biped, bringing information down to earth, CAD Overlay, Character Studio, Design Companion, Design Your World,
Design Your World (logo), Drafix, Education by Design, Generic, Generic 3D Drafting, Generic CADD, Generic Software,
Geodyssey, Heidi, HOOPS, Hyperwire, Inside Track, Kinetix, MaterialSpec, Mechanical Desktop, Multimedia Explorer, NAAUG,
ObjectARX, Office Series, Opus, PeopleTracker, Physique, Planix, Powered with Autodesk Technology, Powered with Autodesk
Technology (logo), RadioRay, Rastation, Softdesk, Softdesk (logo), Solution 3000, Texture Universe, The AEC Authority, The Auto
Architect, TinkerTech, VISION*, WHIP!, WHIP! (logo), Woodbourne, WorkCenter, and World-Creating Toolkit.

The following are trademarks of Autodesk, Inc., in the USA and/or other countries: 3D on the PC, 3ds max, ACAD, Advanced User
Interface, AME Link, Animation Partner, Animation Player, Animation Pro Player, A Studio in Every Computer, ATLAST, Auto-
Architect, AutoCAD Architectural Desktop, AutoCAD Architectural Desktop Learning Assistance, AutoCAD Learning Assistance,
AutoCAD LT Learning Assistance, AutoCAD Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface, Autodesk Animator
Clips, Autodesk Animator Theatre, Autodesk Device Interface, Autodesk Inventor, Autodesk PhotoEDIT, Autodesk Software
Developer's Kit, Autodesk Streamline, Autodesk View DwgX, AutoFlix, AutoSnap, AutoTrack, Built with ObjectARX (logo),
ClearScale, Colour Warper, Combustion, Concept Studio, Content Explorer, cornerStone Toolkit, Dancing Baby (image), Design
2000 (logo), DesignCenter, Design Doctor, Designer's Toolkit, DesignProf, DesignServer, DWG Linking, DXF, Extending the
Design Team, FLI, FLIC, GDX Driver, Generic 3D, gmax, Heads-up Design, Home Series, i-drop, Kinetix (logo), ObjectDBX,
onscreen onair online, Ooga-Chaka, Photo Landscape, Photoscape, Plasma, Plugs and Sockets, PolarSnap, Pro Landscape,
Reactor, Real-Time Roto, Render Queue, SchoolBox, Simply Smarter Diagramming, SketchTools, Sparks, Suddenly Everything
Clicks, Supportdesk, The Dancing Baby, Transform Ideas Into Reality, Visual LISP, Visual Syllabus, VIZable, Volo, and Where Design
Connects.

Third Party Trademarks
Apple and Macintosh are trademarks of Apple Computer, Inc., registered in the U.S. and other countries.
ColdFusion is a registered trademark of Macromedia, Inc. All rights reserved.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries.
Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation in the United States and
other countries.
Microsoft and ActiveX are registered trademarks of Microsoft Corporation in the United States and/or other countries.
All other brand names, product names or trademarks belong to their respective holders.

Third Party Software Program Credits
Copyright © 2001 Microsoft Corporation. All rights reserved.
Portions of this product are distributed under license from D.C. Micro Development, © Copyright D.C. Micro Development. All
rights reserved.
InstallShield ™ Copyright © 2001 InstallShield Software Corporation. All rights reserved.

GOVERNMENT USE
Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set forth in FAR 12.212 (Commercial Computer
Software-Restricted Rights) and DFAR 227.7202 (Rights in Technical Data and Computer Software), as applicable.
 1 2 3 4 5 6 7 8 9 10

Contents

Chapter 1 Introduction 7
What’s New in Release 6 8

Autodesk DWG Data Source Support 8
Enhanced Support for Map Redraw Operations 8
Symbol Bitmap Support 8
Map Mode Retrieval Support 9
Java Edition Platform Support Changes 9

Before You Begin 9
Familiarity with Autodesk MapGuide 9
Programming and Scripting Languages 10
Your Audience. 10
User Help 11

About the Autodesk MapGuide Viewer API 11
Autodesk MapGuide Viewer API Help 13
Autodesk MapGuide Web Site 13

What Is an Autodesk MapGuide Viewer API Application 13
Viewing Maps 14
Querying and Updating Data 14

Creating an Autodesk MapGuide Viewer API Application 15

Chapter 2 Displaying Maps 17
Overview . 18
Map Display for ActiveX Control and Plug-In. 20

Linking to a Map 20
Embedding a Map 22

Map Display for the Java Edition 24
Map Display for Autodesk MapGuide LiteView 26
Installing Viewers on Client Machines 27

Chapter 3 Accessing Maps 31
Overview . 32
Map Access for ActiveX Control and Plug-In 32

Required Software for Autodesk MapGuide Viewer Plug-In. . . 34
iii

Map Access for the Java Edition 35
Map Access from HTML. 35
Map Access Using Java 38
Required Software for the Java Edition 39
Java Edition Differences 39

Communicating with the Plug-In from a Java Applet 40
Accessing Secure Data 43
Handling Busy State and Map Refresh 43

About the Busy State 43
Controlling Map Refresh Operations. 45

Handling Errors 47
Getting Error Codes 47
Checking for Incorrect Argument Types 48

Debugging an Application 48

Chapter 4 Working with Map Layers, Map Features, and Printing . . . 49
Overview . 50
Working with Map Layers 50

Counting Map Layers 50
Listing Map Layers 51
Adding a Map Layer 53
Linking Map Layers 53
Toggling Map Layer Visibility On and Off 55

Working with Map Features 56
Getting Keys of Selected Map Features 56
Getting Coordinates of a Selected Map Feature 58
Invoking Select Radius Mode 61
Zooming In on Selected Features 61
Counting Map Features 62

Working with Printing 64
Setting the Print Priority 65
Enabling the Print Events 66
Positioning Page Elements with Page Coordinate System Units . 67
Adding Custom Page Elements 68

Chapter 5 Handling Events 69
Overview . 70
Working with Event Handlers. 70

Browser Differences 71
Setting Up Event Handlers 72

Plug-In and Java Edition Event Handlers 72
ActiveX Control Event Handlers 75
Plug-In and ActiveX Control Event Handlers 75
iv | Contents

Writing Event Handlers 78
Page Setup Event Handler Example 79
Print Event Handler Example 81
Plug-In Event Handler Example 83

Chapter 6 Using Reports to Query and Update Data Sources 85
Overview . . 86

How Reports Are Generated 86
Specifying the Report Script 86
The Request 87
Launching the Report 87

Introducing ColdFusion and ASP 88
Creating Report Scripts with ColdFusion 89

Listing File Contents with ColdFusion. 89
Querying and Displaying Data via the Map with ColdFusion . . 92
Modifying a Database via the Map with ColdFusion 102

Creating Report Scripts with ASP 109
Summary of ASP Objects, Components, and Events 110
Listing File Contents with ASP 111
Querying and Displaying Data via the Map with ASP 115
Modifying a Database via the Map with ASP 125

Chapter 7 Applications 135
Overview . 136
Custom Redlining Application 136

Redlining Example Code 137
Municipal Application 140

Municipal Application Example Code 141
Facility Management Application 156

Facilities Management Application Example Code 157
DWG Filtering Application 164

Understanding Layers in Autodesk MapGuide 165
Changing Map Layer Data Source Properties 165
DWG Filtering Application Example Code 166

SDF Component Toolkit Applications 171
Updating SDF Files—an ASP Example 171
Converting to an SDF File—a Visual Basic Example 181
Getting SDF File Information—a Visual Basic Example . . . 188
Copying an SDF File—a Visual Basic Example 196

Index . . 203
Contents | v

vi

�

�

�

�

�

1
Introduction
What’s new in Release 6

Before you begin

About the Autodesk
MapGuide Viewer API

What is an Autodesk
MapGuide Viewer API
application

Creating an Autodesk
MapGuide Viewer API
application
The Autodesk MapGuide® product suite provides you

with all the tools you need to create, publish, and display

maps and associated attribute data over the Web. The

Autodesk MapGuide Developer’s Guide is a complete guide

to Autodesk MapGuide customization and development

features. This chapter introduces Autodesk MapGuide

application development, and describes how to use

Autodesk MapGuide® Viewer API to develop such

applications.
7

What’s New in Release 6

This release of the Autodesk MapGuide Viewer API includes one new object
and several new and changed methods and properties to support new and
enhanced features. For detailed information about the new object, and the
methods and properties that were added or changed, choose Help ➤
Contents ➤ What’s New in the Autodesk MapGuide Viewer API Help.

Autodesk DWG Data Source Support

Several changes and additions have been made to Autodesk MapGuide and
the Autodesk MapGuide Viewer API to support Autodesk drawing (DWG)
data sources. The most significant addition is a new MGDwgDataSources
object with several methods and properties to get and set DWG values of
Autodesk MapGuide map layers. Also, a new MGMapLayerSetup method
(getDwgDataSources) and a property (MGDwgDataSources) were added.
Two MGMapLayerSetup methods (getDataFile and setDataFile)
methods and one property (DataFile) were also changed to support DWG
data sources. See “DWG Filtering Application” on page 164 for an example
of working with DWG data sources.

Enhanced Support for Map Redraw Operations

Two new MGMap methods (getIntermediateUpdatesEnabled and
setIntermediateUpdatesEnabled) and a new property
(IntermediateUpdatesEnabled) were added to allow more control over
how frequently, and under what conditions, the Autodesk MapGuide Viewer
redraws a map. Maps are now updated every 1.5 seconds by default. This
allows the end user to view changes to the map as it is being drawn instead
of waiting until the entire map is rendered. See “Handling Busy State and
Map Refresh” on page 43 for information about controlling map refresh
operations.

Symbol Bitmap Support

Changes were made to two MGSymbolAttr methods (setRotation and
setSymbol) and two properties (Rotation and Symbol) to support bitmaps
in symbols.
8 | Chapter 1 Introduction

Map Mode Retrieval Support

One new MGMap method (getMode) and one new property (Mode) were
added to allow retrieval of a map’s mode, such as zoom, pan, and so on.

Java Edition Platform Support Changes

Autodesk MapGuide Viewer, Java™ Edition does not run if you are using
Microsoft® Internet Explorer® 5.x with Macintosh® Runtime for Java (MRJ)
2.2. You need to upgrade to MRJ 2.2.4 or later.

For a complete list of supported platforms, including browsers and operating
systems, refer to “Autodesk MapGuide Viewer Requirements” in Chapter 1,
“Introduction,” in the Autodesk MapGuide User’s Guide.

Before You Begin

Before you can begin developing with Autodesk MapGuide, you need to
know how to use Autodesk MapGuide and the programming and scripting
languages you use to create Autodesk MapGuide web applications. Equally
important, you need to know who your users are and what they need, as well
as how to deliver help about your applications.

Familiarity with Autodesk MapGuide

You need to be very familiar with Autodesk MapGuide. In particular, you
should read the first few chapters of the Autodesk MapGuide User’s Guide to
make sure you understand the product, especially emphasizing the following
sections:

� Chapter 2, “Understanding Autodesk MapGuide.” Read this chapter care-
fully, with particular attention to the sections on how the components
work together, application development components, and what applica-
tion development is.

� Chapter 3, “Designing Your System.” Pay particular attention to the sec-
tions on security, architecture and performance, and choosing a
Viewer/browser environment.

The more you understand about the Autodesk MapGuide components and
how they work together, the easier it will be for you to comprehend the
examples in this book and come up with unique solutions on your own.
Before You Begin | 9

Programming and Scripting Languages

You’ll need to be familiar with one or more of the following programming
languages or toolkits to develop Autodesk MapGuide web applications.
MapGuide applications can include a variety of capabilities including
customized interface (toolbar, etc.), report generation, processing of
redlining markup, server-side processing of SDF files, Dynamic Map
Authoring, and more.

� Use Java, JavaScript, JScript, Visual Basic, or VBScript with the Autodesk
MapGuide Viewer API to develop applications that programmatically
access and control Autodesk MapGuide Viewer. This document covers
what you need to know to develop such applications.

� Use Macromedia® ColdFusion®, Microsoft® Active Server Pages (ASP), or
another third-party application to create custom reports. For information
about creating reports, see Chapter 6, “Using Reports to Query and Update
Data Sources.”

� Use the SDF Component Toolkit to create server-side scripts that dynam-
ically update SDF files posted on an Autodesk MapGuide® Server. For more
information about using this toolkit, see “SDF Component Toolkit Appli-
cations” on page 171 and refer to the SDF Component Toolkit Help.

� Use the Autodesk MapGuide Viewer API to process redlining data and
update your data sources. For more information about working with
redlining data, see “Custom Redlining Application” on page 136.

� Use the Dynamic Authoring Toolkit to build XML-based applications for
dynamic map solutions. For more information about this toolkit, refer to
the Dynamic Authoring Toolkit Developer’s Guide.

Your Audience

As with all development, the most important aspect of designing your appli-
cation is asking yourself, “What do my users need?” Talk to the people who
will be using your application and find out how they will be using it. What
tasks will they want to perform? Will they need redlining? Are they computer
savvy, or will you need to guide them through basic usage of your applica-
tion? Do they have much domain knowledge? It’s critical that you find out
what tasks your users will need to perform, as well as their knowledge of
those tasks.
10 | Chapter 1 Introduction

User Help

If you want to provide information about your application that users can
readily access, you can develop your own set of Help pages. You can then set
up the map to point to your customized Help system instead of the default
Autodesk MapGuide Viewer Help when users click the Help button or access
Help from the popup menu. For more information, refer to the Autodesk
MapGuide Help.

About the Autodesk MapGuide Viewer API

The Autodesk MapGuide Viewer API allows you to customize the way in
which someone using Autodesk MapGuide Viewer interacts with a map. You
can also create a stand-alone version of the Autodesk MapGuide Viewer that
displays maps without the use of a Web browser.

Autodesk MapGuide Viewer comes in three different types: Autodesk
MapGuide Viewer ActiveX Control, Autodesk MapGuide Viewer Plug-In, and
Autodesk MapGuide Viewer, Java Edition. These Viewer types are sometimes
referred to as Viewer versions within the Help and the documentation. Be
careful to not confuse this usage with Autodesk MapGuide release versions.
Each Autodesk MapGuide Viewer type exposes a programming interface that
you can use to programmatically access and manipulate its functionality.

For example, you could create an application that displays a map in one
frame and a form in another. In the form, you might have controls such as
buttons and list boxes that use API methods to alter or redraw the map. Or,
you might put the map and controls on a single page, as shown in the
following illustration. This application consists of a map, a form listing map
features, and a number of custom image buttons on the HTML page. Users
can select a city from the list box, and then click a button to zoom to that
city.
About the Autodesk MapGuide Viewer API | 11

Sample application with custom buttons

You could also code your application to update the form, display status infor-
mation, or change the appearance of buttons as users select or double-click
specific features on the map. This two-way interaction between the map and
controls on the Web page allows you to create very powerful applications.

In this context, an Autodesk MapGuide Viewer application is a Web page
containing one or more maps, each of which is displayed in a separate
instance of the Autodesk MapGuide Viewer. The Web page can also have
frames, buttons, controls, graphics, and so on for querying and controlling
the map and its data. In most cases, you will write your application code
within one or more HTML pages using one of the supported languages (refer
to “Choosing a Viewer/Browser Environment” in the Autodesk MapGuide
User’s Guide).
12 | Chapter 1 Introduction

Autodesk MapGuide Viewer API Help

For complete information about the Autodesk MapGuide Viewer API, refer to
Autodesk MapGuide Viewer API Help, available from the Autodesk MapGuide
CD and the Autodesk MapGuide documentation page at the following web
site: www.autodesk.com/mapguidedocs. The Autodesk MapGuide Viewer API
Help provides descriptions of all of the Autodesk MapGuide Viewer API
objects, methods, properties, and events, and it includes sample applications
that you can use to get a quick start.

Autodesk MapGuide Web Site

You can find additional information about Autodesk MapGuide develop-
ment on the Autodesk MapGuide Web site at www.autodesk.com/mapguide.
The site provides many examples of applications developed with Autodesk
MapGuide, both demo applications and real customer sites. You will also
find links to resources, such as Autodesk MapGuide Viewer API Help, API exam-
ples, general product documentation, and discussion groups.

What Is an Autodesk MapGuide Viewer API
Application

An Autodesk MapGuide Viewer API application can be as simple as an HTML
page that displays an embedded map window file (MWF), or it can be as
complex as a CGI application, coded in C++, that modifies data files on the
server and refreshes the browsers of everyone viewing the map. Usually it is
something between the two, such as a map embedded in a Web page with
buttons and other controls on it that interact with the map.

The following sections describe several of the tasks your Autodesk MapGuide
application can perform.
What Is an Autodesk MapGuide Viewer API Application | 13

Viewing Maps

The most common development goal is to allow Autodesk MapGuide Viewer
users to view and interact with maps. You can do this by embedding a map
in an HTML page, in which case the Autodesk MapGuide Viewer runs within
the user’s Web browser to display the map, or you can run the Autodesk
MapGuide Viewer from within a stand-alone application that you create.
With either approach, you will use the Autodesk MapGuide Viewer API to
interact with the map. For example, you might create a button that refreshes
a map or add text boxes that allow the user to add data to the map.

Querying and Updating Data

Beyond viewing maps, users want to retrieve data to answer questions. This
includes selecting map features and running reports on them, such as
selecting power poles and seeing when they were last serviced. You set up
these reports using Macromedia ColdFusion, Microsoft Active Server Pages
(ASP), or another server-side scripting language. Additionally, you can use
these scripts to enable the user to update the data. For example, you could
display the date of last service in a text field, where the technician in the field
could update it. Your script would then take the technician’s date and update
the source database, so that all other technicians viewing that power pole on
the map would see the new date of last service. For more information about
reports, see Chapter 6, “Using Reports to Query and Update Data Sources.”

You can also enable users to mark up the maps to edit the spatial data, such
as correcting the location of a fire hydrant by drawing its correct location on
the map. This process is called redlining. Autodesk MapGuide provides APIs
that allow you to add redlining functionality to your map. You can then
create a server-side script that retrieves the redlining data, processes it, and
updates the source data. For more information about redlining, see “Custom
Redlining Application” on page 136. If your source data is in SDF files, you
can use the SDF Component Toolkit to update the SDFs directly when
redlining. For more information about working with SDF files, see “SDF
Component Toolkit Applications” on page 171.
14 | Chapter 1 Introduction

Creating an Autodesk MapGuide Viewer API
Application

The following table summarizes tasks involved when creating an Autodesk
MapGuide Viewer API application. For examples of real-world applications,
also see Chapter 7, “Applications.”

Application Type Task For more information...

Simple
Applications

Display maps by either
linking to or embedding
them in an HTML page

See Chapter 2, “Displaying
Maps”

Programmatically access
and manipulate maps,
map layers, and map
features

See Chapter 3, “Accessing
Maps” and Chapter 4, “Work-
ing with Map Layers, Map Fea-
tures, and Printing”

Advanced
Applications

Respond to Autodesk
MapGuide Viewer events

See Chapter 5, “Handling
Events”

Query and update data
sources using reports

See Chapter 6, “Using Reports
to Query and Update Data
Sources”
Creating an Autodesk MapGuide Viewer API Application | 15

16

�

�

�

�

�

2
Displaying Maps
Overview

Map display for ActiveX
Control and Plug-In

Map display for the Java
Edition

Map display for Autodesk
MapGuide LiteView

Installing Viewers on client
machines
This chapter describes how to link to or embed a map in

a Web page for display in Autodesk MapGuide® Viewer

ActiveX Control, Autodesk MapGuide Viewer Plug-In, or

Autodesk MapGuide Viewer, Java Edition. Once your

application can display a map, you can access the map

programmatically, as described in Chapter 3, “Accessing

Maps.”
17

Overview

The process of displaying a map involves linking to or embedding a specific
map in a Web page. The Autodesk MapGuide Viewer installed on each user
machine runs automatically to display the map. This means that your users
can view the same map with one of three Autodesk MapGuide Viewers
(Autodesk MapGuide Viewer ActiveX Control, Autodesk MapGuide Viewer
Plug-In, or Autodesk MapGuide Viewer, Java Edition), depending on which
ones you support. If your users are unable to download or install an Autodesk
MapGuide Viewer, or if they do not need query or more advanced function-
ality provided by Autodesk MapGuide Viewers, they can use Autodesk
MapGuide® LiteView instead. For more information about this viewing solu-
tion, see “Map Display for Autodesk MapGuide LiteView” on page 26.

The Autodesk MapGuide Viewers you choose to support depend on the
browser operating environment of your users. The programming or scripting
languages you use to develop your applications depend on the Autodesk
MapGuide Viewers you support. For a detailed discussion of these options,
refer to “Choosing a Viewer/Browser Environment” in the Autodesk
MapGuide User’s Guide.

The following table summarizes the combinations supported by Autodesk
MapGuide.
18 | Chapter 2 Displaying Maps

Browser/Viewer Configurations

Operating
System

Browser Client-Side
Viewer

Programming
or Scripting
Language

Windows Internet Explorer Autodesk
MapGuide Viewer
ActiveX Control

HTML, VBScript,
JScript, JavaScript

Autodesk
MapGuide Viewer,
Java Edition

HTML, JScript,
JavaScript, Java

Netscape
Navigator

Autodesk
MapGuide Viewer
Plug-In

HTML, JavaScript

Autodesk
MapGuide Viewer,
Java Edition

HTML, JavaScript,
Java

None
(stand-alone
application)

Autodesk
MapGuide Viewer
ActiveX Control

Visual Basic

Mac OS Internet Explorer Autodesk
MapGuide Viewer,
Java Edition

HTML, Java

Solaris Netscape
Navigator

Autodesk
MapGuide Viewer,
Java Edition

HTML, JavaScript,
Java
Overview | 19

Map Display for ActiveX Control and Plug-In

To display your map with Autodesk MapGuide Viewer ActiveX Control
and/or Autodesk MapGuide Viewer Plug-In, you can either:

� Link to the map, or
� Embed the map (the map runs inside a Web browser)

Linking to a Map

You can display a map by creating a link to the map from an HTML page.
The, when the user clicks the link, the map displays full screen. Note that the
browser displays the map by itself, not as part of an HTML page.

Create the link just like any other link in HTML, using the <A> tag with the
HREF parameter. Set the HREF value to the URL of your Autodesk MapGuide
Server, along with the maps directory alias and the MWF file for the map:

United States
Map

Linked map
20 | Chapter 2 Displaying Maps

Displaying a Linked Map in a Different Window or Frame

To display the linked map in a different window or frame, use the TARGET
parameter. If necessary, open the second window or frame so that the orig-
inal document can continue to be displayed. For example:

<A HREF="http://www.mapguide.com/maps/usa.mwf"
TARGET="MAPAREA">United States Map

This displays the usa.mwf map in a Web browser window called MAPAREA.
The TARGET parameter can also specify the name of a frame.

Displaying a Specific Area of the Map

In an Autodesk MapGuide Viewer, you can adjust the view of the map
window so that it displays only the area you want.

To display a specific area of a map

1 Right-click over the map to display the popup menu, and then use the
Zoom commands or Pan to display the area of the map you want.

2 Right-click again, and then choose Copy ➤ As URL to copy the map’s URL
to the clipboard.

3 In your HTML document, choose Edit ➤ Paste to paste the URL into the
HREF parameter of the anchor tag. For example:

<A HREF="http://www.mapguide.com/maps/usa.mwf?Lat=37.81
&Lon=-122.37&Width=20.0&Units=Mi&ext=.mwf">United States Map

This displays the San Francisco area. For a list of the parameters that control
the way the map is displayed when linked to or embedded in an HTML page,
choose Help ➤ Contents ➤ Advanced Topics ➤ URL Parameters in the
Autodesk MapGuide Viewer Help.
Map Display for ActiveX Control and Plug-In | 21

Embedding a Map

A second way to display a map is to embed it in an HTML page. Embedding
a map displays it with the rest of the information on that page.

To embed the map, use the EMBED (for Netscape Navigator) or OBJECT (for
Microsoft Internet Explorer) tag in the page.

To ensure that both Netscape Navigator and Internet Explorer can access the
map, use both tags. For example:

<OBJECT ID="map" WIDTH=300 HEIGHT=200 CLASSID="CLSID:62789780-B744-
11D0-986B-00609731A21D">

<PARAM NAME="URL" VALUE="http://www.mapguide.com/maps/usa.mwf">
<EMBED SRC="http://www.mapguide.com/maps/usa.mwf" NAME="map"

WIDTH=300 HEIGHT=200>
</OBJECT>

For a list of the parameters that control the way the map is displayed when
it is linked to or embedded in an HTML page, choose Help ➤ Contents ➤
Advanced Topics ➤ URL Parameters in the Autodesk MapGuide Viewer Help. Be
sure that the values you use are the same for both the OBJECT and EMBED
parameters.

The following screen shows the embedded map.
22 | Chapter 2 Displaying Maps

Embedded map

Embedding a Map in a Frame-Based Page

To display a map within a frame-based page, use the <FRAME> tag to refer-
ence an HTML document that embeds the map. When you display a map
within a frame, the size of the map can grow and shrink as the window is
resized. To see an example of a map within a simple frame-based HTML page,
choose Help ➤ Contents ➤ Examples Basic ➤ Simple Frameset example in
the Autodesk MapGuide Viewer API Help.

The following is an example of an HTML page for frame set layout:

<HTML>
<HEAD>
<TITLE>Frame Layout</TITLE>
</HEAD>

<FRAMESET ROWS="70%,*">
<FRAME SRC="map.htm" NAME="myFrame" SCROLLING=no

MARGINHEIGHT=0 MARGINWIDTH=0>
<FRAME SRC="list.htm" NAME="ListFrame">

</FRAMESET>
</HTML>
Map Display for ActiveX Control and Plug-In | 23

Here is an example HTML page for map.htm referenced by the frame set:

<HTML>
<HEAD>
<TITLE>Map.htm</TITLE>
</HEAD>
<BODY>
<OBJECT ID="map" WIDTH=100% HEIGHT=100%

CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D"
CODEBASE="ftp://adeskftp.autodesk.com/webpub/mapguide/ver6/

mgaxctrl.cab#Version=6,0,x,x">
<PARAM NAME="URL" VALUE="http://www.mapguide.com/maps/usa.mwf">
<PARAM NAME="ToolBar" VALUE="OFF">
<EMBED SRC="http://www.mapguide.com/maps/usa.mwf?ToolBar=OFF"

NAME="map" WIDTH=100% HEIGHT=100% BORDER=0>
</OBJECT>
</BODY>
</HTML>

Note that in your applications, you should change the release (#Version)
number from 6,0,x,x to the actual release number of Autodesk MapGuide
you are using. You can find the release number using the Help ➤ Help About
menu command in the user interface or the MGMap.aboutDlg method.

Map Display for the Java Edition

Using Autodesk MapGuide Viewer, Java Edition, you cannot display a map
by linking to it; you must embed it. The following are ways to embed a map:

� Embed Autodesk MapGuide Viewer, Java Edition in the HTML page where
the map is embedded (runs inside a Web browser).

� Wrap a Java applet around Autodesk MapGuide Viewer, Java Edition (can
run inside or outside of a Web browser). For information about applet
wrappers, see “Map Access Using Java” on page 38.

If you are using Autodesk MapGuide Viewer, Java Edition, you cannot link to
a map. Instead, you must embed the map in the HTML page. To do this, use
the <APPLET> tag and be sure to enter it directly into the HTML. Do not use
document.write statements. For example, you should use:

<APPLET NAME="map" WIDTH=300...

and so on, and not use:

document.write('<APPLET');
document.write(' NAME=map');
...

Note Do not specify the height and width parameters in percentages, because
percentages are unsupported in Internet Explorer on the Macintosh.
24 | Chapter 2 Displaying Maps

To display your map with Autodesk MapGuide Viewer, Java Edition

1 Start with the standard HTML <APPLET> tag.

2 Set the CODE parameter to the path to the MGMapApplet.class file in the
com.autodesk.mgjava package. This package is where the API for Autodesk
MapGuide Viewer, Java Edition resides. You can find this package in the
mgjava.jar archive file, which contains all Autodesk MapGuide Viewer,
Java Edition class files for Windows, Macintosh, or Solaris systems. There
is also an mgjava.cab file for Windows only. To download these files,
choose Help ➤ Contents ➤ Plug-In/Java Edition Downloads in the
Autodesk MapGuide Viewer API Help. The MGMapApplet object provided by
the MGMapApplet.class file implements the MGMap object interface for
Autodesk MapGuide Viewer, Java Edition. Setting the CODE parameter to
MGApplet instantiates Autodesk MapGuide Viewer, Java Edition.

3 Set the VALUE parameter to the URL of your Autodesk MapGuide Server
and the path to the MWF file for the map. For example:

<HTML>
<HEAD>
<TITLE> Autodesk MapGuide Viewer, Java Edition Example</TITLE>
</HEAD>
<BODY>

<CENTER>
<H2>Simple Invocation of Installed Autodesk MapGuide

Applet</H2>
<APPLET WIDTH=300 HEIGHT=200 ALIGN="baseline"

CODE="com/autodesk/mgjava/MGMapApplet.class">
<PARAM NAME="mwfURL"
VALUE="http://www.mapguide.com/maps/usa.mwf">

</APPLET>
</CENTER>

</BODY>
</HTML>
Map Display for the Java Edition | 25

Map Display for Autodesk MapGuide
LiteView

Autodesk MapGuide LiteView is a platform-independent, server-side viewing
solution that delivers maps in the form of static raster images to client Web
browsers from your Web page. It is not a type of Autodesk MapGuide Viewer.
Autodesk MapGuide LiteView is useful when users need only to display the
map and do not need the more advanced queries and other functionality of
Autodesk MapGuide Viewer. Also, since LiteView is a server-side solution,
users do not have to download and install one of the Autodesk MapGuide
Viewer types to view your maps.

To display a map using Autodesk MapGuide LiteView, you send a URL
request that returns the map displayed as a raster image file in the browser.
Note that you do not use the Autodesk MapGuide Viewer API with Autodesk
MapGuide LiteView. For complete information on implementing Autodesk
MapGuide LiteView, refer to the Autodesk MapGuide LiteView Developer’s
Guide. The following table summarizes the supported configurations for
Autodesk MapGuide LiteView:

Autodesk MapGuide LiteView Configurations

Operating
System

Browser Server-Side
Viewing Solution

Programming
or Scripting
Language

Windows Any browser that
supports PNG file
format

Autodesk MapGuide
LiteView

ColdFusion (CF),
Active Server Pages
(ASP), Java Server
Pages (JSP) or PerlMac OS

Solaris
26 | Chapter 2 Displaying Maps

Installing Viewers on Client Machines

If users accessing your Web site don’t have an Autodesk MapGuide Viewer
installed on their system, they need to download one in order to view the
map you have displayed in the Web page. You can include code in your
HTML file that automatically detects whether or not the user has Autodesk
MapGuide Viewer, and then either downloads it automatically or prompts
the user to download it themselves.

To install the Autodesk MapGuide Viewer ActiveX Control

1 To install the latest version of Autodesk MapGuide Viewer ActiveX Con-
trol for Internet Explorer users, include the CODEBASE parameter to access
the ActiveX Control cabinet file, mgaxctrl.cab, in the HTML page that spec-
ifies your map. This parameter detects whether the latest version of the
Autodesk MapGuide Viewer ActiveX Control is installed. If the user does
not have the ActiveX Control or has an older version, the latest version
will be installed automatically.

In the following example, the CODEBASE parameter references the
mgaxctrl.cab file located on the Autodesk MapGuide FTP site. Alterna-
tively, you can copy this file to your Web server and reference the file
there. You can find a copy of this file in the \ActiveXCab folder on the
Autodesk MapGuide CD:

<OBJECT ID="map" WIDTH=300 HEIGHT=200
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D"
CODEBASE="ftp://adeskftp.autodesk.com/webpub/mapguide/ver6/

mgaxctrl.cab#Version=6,0,x,x">
<PARAM NAME="URL"

VALUE="http://www.mapguide.com/maps/usa.mwf">
<EMBED SRC="http://www.mapguide.com/maps/usa.mwf"

NAME="map" WIDTH=300 HEIGHT=200
PLUGINSPAGE="<www.autodesk.com/mapguideviewerdownload>">

</OBJECT>

Note that in your applications, you should change the release (#Version)
number from 6,0,x,x to the actual release number of Autodesk
MapGuide you are using. You can find the release number using the Help
➤ Help About menu command in the user interface or the
MGMap.aboutDlg method.
Installing Viewers on Client Machines | 27

To install the Autodesk MapGuide Viewer Plug-In

1 To install the latest version of Autodesk MapGuide Viewer Plug-In for
Netscape Navigator users, write additional code to prompt the user to
download Autodesk MapGuide Viewer Plug-In, as follows:

To download Autodesk MapGuide Viewer Plug-In

// Call this function on a page onLoad event or frameset onLoad event
function init()
{

// For Netscape browsers, check for
// Autodesk MapGuide Viewer Plug-In
if (navigator.appName == "Netscape")
{

for(j=0;j<navigator.plugins.length;j++)
{

if (navigator.plugins[j].name == "Autodesk MapGuide")
return;

}
// If the Autodesk MapGuide Viewer Plug-In is
// not detected, display the message...
displayDownloadMsg();
return;

}
// If the Autodesk MapGuide Viewer Plug-In is installed,
// check the version by returning the API version
var version = getMap().getApiVersion();
// If the API/Plug-In version is previous to 6.0,
//display the message
if (version < "6.0")
{

displayDownloadMsg();
return;

}
}
function displayDownloadMsg()
{

// Display dialog box.
msg = "You do not have the latest version of " +

"Autodesk MapGuide Viewer. Do you want to " +
"download it now? Click OK to download or Cancel" +
"to proceed with your current Autodesk MapGuide Viewer."

// If user clicks OK, load download page from Autodesk Web site
if (confirm(msg))

top.window.location =
"www.autodesk.com/mapguideviewerdownload";

}

28 | Chapter 2 Displaying Maps

To install the Autodesk MapGuide Viewer, Java Edition

1 To check a client machine for Autodesk MapGuide Viewer, Java Edition,
include the following applet in the HTML page that displays your map:

<APPLET
WIDTH="200"
HEIGHT="50"
CODE="CheckInstall.class"
<PARAM NAME="ClassToCheck"

VALUE="com.autodesk.mgjava.MGMapApplet">
<PARAM NAME="Installer"

VALUE="http://www.autodesk.com/mapguideviewerdownload">
</APPLET>

If Autodesk MapGuide Viewer, Java Edition is not found, the user is given
the option to download it from the Autodesk MapGuide download page.
For this code to work, the CheckInstall.class file must reside in the same
directory as the Web page that contains this code. Alternatively, you can
add a CODEBASE parameter that points to the folder where this file exists.

For a working example, choose Help ➤ Examples Advanced ➤ Java Edition
Examples ➤ Example3 in the Autodesk MapGuide Viewer API Help. For a
default Windows installation, you can find a copy of the
CheckInstall.class file in the following location:

C:\Program Files\Autodesk\MapGuideDocumentation6
\ViewerAPIHelp\ViewerAPI\JavaEdition\examples\classes
Installing Viewers on Client Machines | 29

30

�

�

�

�

�

�

�

�

3
Accessing Maps
Overview

Map Access for ActiveX
Control and Plug-In

Map Access for the Java
Edition

Communicating with the
Plug-In from a Java applet

Accessing secure data

Handling busy state and
map refresh

Handling errors

Debugging an application
This chapter describes how to programmatically access

maps you have embedded in a Web page. Once your

application can access a map, you can begin to expand

your application to work with map layers, map features,

and printing as described in Chapter 4, “Working with

Map Layers, Map Features, and Printing.”
31

Overview

Netscape® Navigator® and Microsoft® Internet Explorer® expose map objects
at different levels in their object hierarchies. Therefore, how you access a map
is determined by the browsers you are supporting, not by the version of
Autodesk MapGuide® Viewer you use. As described in this chapter, you can
write a simple function that checks the user’s browser type and returns an
instance of the MGMap object using the technique required by that browser.
Note that we refer to JavaScript code modules as functions, reserving the term
method for the Autodesk MapGuide Viewer API. Once you’ve obtained the
map object, your application code uses that instance when it calls methods
in the Autodesk MapGuide Viewer API. In most cases, the code for either
browser will be identical.

Map Access for ActiveX Control and Plug-In

This section describes how to access maps from both Netscape Navigator and
Internet Explorer. The techniques described here use JavaScript as the
scripting language. Because Internet Explorer automatically recompiles
JavaScript code into its native JScript, you can write JavaScript code that
works with either browser.

Suppose you embedded your map and named it map. In Netscape Navigator,
the map object called map is exposed by the document object and can be
accessed from JavaScript in one of the following ways:

document.map // one way...
document.embeds["map"] // another way...

In Internet Explorer, the map object called map is exposed by the window
object and can be accessed from JavaScript in one of the following ways:

window.map // one way...
map // another way...

The easiest way get around these differences is to write a getMap function
that checks the browser type and returns the appropriate map object; that
function can then be called as needed by the rest of the code in your
application.
32 | Chapter 3 Accessing Maps

If your embedded map had the name map, the code to access the map on a
simple, frameless HTML page would look like this:

<SCRIPT LANGUAGE="JavaScript">
function getMap()
{

if (navigator.appName() == "Netscape")
return document.map;

else
return window.map;

}
</SCRIPT>

If your application had multiple HTML frames, the code to access the same
map in a frame called Left would look like this:

<SCRIPT LANGUAGE="JavaScript">
function getMap()
{

if (navigator.appName == "Netscape")
return parent.Left.document.map;

else
return parent.Left.map;

}
</SCRIPT>

Note We chose the name getMap for our function, but the name can be any-
thing you want, as long as it follows JavaScript naming conventions. Be careful to
not to confuse the getMap function with MGMapLayer.getMap, a predefined
Autodesk MapGuide Viewer API method.

After this function is defined, any other JavaScript method can simply call
getMap to retrieve the map object. For example, you can create a variable to
represent the map, and then use getMap to set the value of that variable:

var map = getMap();

You can then apply methods to that variable to work with the map. For
example, the following function displays an Autodesk MapGuide report
called Parcel Data:

function runReport()
{

var jb_map = getMap(); // assign map to variable
jb_map.viewReport('Parcel Data'); // call method from variable

}

Or you could bypass the variable assignment and use getMap directly:

function runReport()
{

getMap().viewReport('Parcels'); // use getMap() return value
}

Map Access for ActiveX Control and Plug-In | 33

Because getMap has an MGMap object as its return value, you can use the func-
tion in place of MGMap, accessing that object’s methods or properties as
needed.

Warning Because Netscape Communicator 4.x contains the Same Origin secu-
rity policy, the map object cannot be accessed by the Autodesk MapGuide Viewer
API code in a different frame. This occurs only when the code is written in Java or
JavaScript and is on a different domain from the one where the map window file
(MWF) resides.

To enable codebase principals

1 Make sure Netscape Communicator is not running.

2 In your prefs.js file, located in the Netscape/user directory, add the line:

user_pref("signed.Java editions.codebase_principal_support",
true);

3 In your JavaScript code, before making any Autodesk MapGuide Viewer
API calls or references, add the line:

netscape.security.PrivilegeManager.enablePrivilege("UniversalBr
owserRead");

4 When executing the JavaScript code, Netscape Communicator will ask
whether to Grant or Deny access to the script. If you select Grant, the
script will run normally. Otherwise, the script is prevented from
executing.

Because codebase principals offer a minimal level of security, they can be
useful during development of your code, but you should use object signing
and digital signatures before delivery. For detailed information on Netscape
Communicator’s security models, codebase principals, and object signing,
refer to the Netscape developer documentation.

Required Software for Autodesk MapGuide
Viewer Plug-In

To work with Autodesk MapGuide Viewer Plug-In, you may need to down-
load certain Java files provided with Autodesk MapGuide. Specifically, if your
application will handle events, you will need to download the Java observer
applet file MapGuideObserver6.class. For information about event handling
with Autodesk MapGuide Viewer Plug-In, see Chapter 5, “Handling Events.”

To download this observer applet file, choose Help ➤ Contents ➤ Plug-
In/Java Edition Downloads in the Autodesk MapGuide Viewer API Help.
34 | Chapter 3 Accessing Maps

Map Access for the Java Edition

You can access maps using Autodesk MapGuide Viewer, Java Edition in two
ways:

� From an HTML page by embedding Autodesk MapGuide Viewer, Java Edi-
tion in the HTML page where the map is embedded. This approach is
described in “Map Display for the Java Edition” on page 24. In this case,
Autodesk MapGuide Viewer, Java Edition runs inside a Web browser.

� Using Java by wrapping a Java applet around Autodesk MapGuide Viewer,
Java Edition as described in “Map Access Using Java” on page 38. Using
this approach, Autodesk MapGuide Viewer, Java Edition can run inside or
outside a Web browser.

Map Access from HTML

In an HTML page, you can simply embed Autodesk MapGuide Viewer, Java
Edition using the <Applet> tag. This approach provides the following
benefits:

� You can post a map that most browsers and operating systems can access.

� This is the simplest way to support Autodesk MapGuide Viewer, Java Edi-
tion. All you have to do is use the standard HTML <Applet> tag and set
MGMapApplet as the code value.

Although this approach supports the greatest number of browser/platform
combinations, just displaying the map might not provide enough function-
ality for you. In this case, you might want to use JavaScript or JScript.

Using JavaScript or JScript

The JavaScript or JScript techniques for accessing maps described in “Map
Access for ActiveX Control and Plug-In” on page 32 also work for Autodesk
MapGuide Viewer, Java Edition since the object hierarchy is determined by
the browser, not by the version of the Autodesk MapGuide Viewer.
Map Access for the Java Edition | 35

Using JavaScript or JScript within an HTML page, you can create controls on the
HTML page, such as list boxes and buttons, that interact with the map. However,
JavaScript and JScript do not behave uniformly across all browser/operating
system combinations. Internet Explorer has the following limitations:

� Internet Explorer 4.0 for Mac OS does not support JavaScript. It supports
JScript, but JScript cannot control a Java applet.

� Because Internet Explorer exposes applets as COM objects instead of Java
objects, API methods that pass observer objects will not work. For exam-
ple, the digitizePoint method requires an instance of the
MGDigitizePointObserver object. Therefore, Internet Explorer would
not be able to access digitizePoint or any other methods that pass
observer objects as arguments, including the following MGMap methods. If
you need to use any of these methods, implement Autodesk MapGuide
Viewer, Java Edition from Java instead of JavaScript or JScript:

� addMapLayer and addMapLayers

� all of the digitize methods

� viewDistance and viewDistanceEx

The following table lists the levels of support that JavaScript or JScript
provide across different configurations.
36 | Chapter 3 Accessing Maps

Therefore, if you need to support the largest number of browsers and oper-
ating systems, you should embed the Autodesk MapGuide Viewer, Java
Edition in an HTML page and not use either JavaScript or JScript to interact
with the map. If you need more interactivity with the map, you will need to
use Java instead, as described below. This is particularly important if you
need to support Macintosh users, as they will need to use the Autodesk
MapGuide Viewer, Java Edition with Internet Explorer, which doesn’t have
full JScript support.

JavaScript/JScript Support for Different Configurations

Operating System Viewer Version JavaScript or JScript Support

Windows Autodesk
MapGuide Viewer
Plug-In on
Netscape
Navigator

Full support.

Autodesk
MapGuide Viewer
ActiveX Control on
Internet Explorer

Autodesk
MapGuide Viewer,
Java Edition on
Netscape
Navigator

Autodesk
MapGuide Viewer,
Java Edition on
Internet Explorer

Only methods that do not pass
observer objects as arguments.

Solaris Autodesk
MapGuide Viewer,
Java Edition on
Netscape

Full support.

Mac OS Autodesk
MapGuide Viewer,
Java Edition on
Internet Explorer

Internet Explorer 4.0 does not sup-
port JavaScript and JScript cannot
control Java applets.
Map Access for the Java Edition | 37

Map Access Using Java

You can access maps using Java and the Autodesk MapGuide Viewer, Java
Edition in several different ways, including using a wrapper Java applet, a
peer Java applet, or a wrapper Java application.

Wrapper Java Applet

You can write a wrapper Java applet that uses the pre-installed Autodesk
MapGuide Viewer, Java Edition and contains all the Autodesk MapGuide
Viewer API methods. This approach enables the Autodesk MapGuide Viewer
API to work on all operating systems and browsers. To run Autodesk
MapGuide Viewer from a wrapper applet, code your wrapper to instantiate
MGMapComponent. Then, in HTML, set the CODE value of the <APPLET> tag
to the name of the wrapper applet. For a Java wrapper applet example,
choose Help ➤ Contents ➤ Examples Advanced ➤ Java Edition Examples ➤
Example6 in the Autodesk MapGuide Viewer API Help.

Peer Java Applet

You can write a peer Java applet that runs Autodesk MapGuide Viewer, Java
Edition. This approach is slightly simpler than driving Autodesk MapGuide
Viewer, Java Edition from a wrapper applet, because, with a peer java applet,
Autodesk MapGuide Viewer, Java Edition is automatically provided with
browser services such as showDocument. Another benefit is that Autodesk
MapGuide Viewer, Java Edition and the peer applet can exist in separate
frames in the HTML document. To run Autodesk MapGuide Viewer from a
peer applet, your HTML page needs to include the <APPLET> tag twice: to set
the CODE value to MGMapApplet, and to set it to the name of the peer applet.

Wrapper Java Application

You can write a Java wrapper application that runs Autodesk MapGuide
Viewer, Java Edition outside a browser. This approach is analogous to using
Visual Basic to run Autodesk MapGuide Viewer ActiveX Control outside a
browser. You can still have Internet access from a Java application outside a
browser, but browser-specific functionality will not be available. To run
Autodesk MapGuide Viewer from a wrapper application, the application must
embed the MGMapComponent object and then implement the MGMapContext
object interface so that MGMapComponent can use the methods defined in
MGMapContext that are normally provided by the browser.
38 | Chapter 3 Accessing Maps

Required Software for the Java Edition

To work with Autodesk MapGuide Viewer, Java Edition, you may need to
download certain Java files provided with Autodesk MapGuide. Specifically,
you will need to access the Autodesk MapGuide Viewer, Java Edition API,
which resides in the com.autodesk.mgjava package. You can find this package
in the mgjava.jar archive file, which contains all Autodesk MapGuide Viewer,
Java Edition class files for Windows, Macintosh, or Solaris systems. There is
also an mgjava.cab file for Windows only. To download these files, choose
Help ➤ Contents ➤ Plug-In/Java Edition Downloads in the Autodesk
MapGuide Viewer API Help.

If you are developing a Java application with Autodesk MapGuide Viewer,
Java Edition, you will also need the Java Development Kit version 1.1.x. If
you do not have this version, you can get it by downloading it from the
following Web site: java.sun.com. If you are developing a Java application
with Autodesk MapGuide Viewer, Java Edition using a development environ-
ment such as WebGain® VisualCafe™ or Borland® JBuilder, be sure to include
the mgjava.jar file in your classpath.

If your application will handle events, you will need to download the Java
observer applet file MapGuideObserver6J.class. For more information about
event handling with Autodesk MapGuide Viewer, Java Edition, see Chapter
5, “Handling Events.” To download the Autodesk MapGuide observer, files,
choose Help ➤ Contents ➤ Plug-In/Java Edition Downloads in the Autodesk
MapGuide Viewer API Help.

Java Edition Differences

The following sections describe some functional and browser differences
between Autodesk MapGuide Viewer, Java Edition and Autodesk MapGuide
Viewer ActiveX Control and Autodesk MapGuide Viewer Plug-In.

Functional Differences with Java Edition

Bookmarks and map preferences are stored in a different location for
Autodesk MapGuide Viewer, Java Edition than they are for Autodesk
MapGuide Viewer ActiveX Control and Autodesk MapGuide Viewer Plug-In.
They are not stored in the system registry. Instead, they are stored in the
user’s local file system, relative to the user’s home directory at
$home/.autodesk/mapguide/6.0 where $home is the value of the Java system
property user.home.
Map Access for the Java Edition | 39

Different browsers and development environments have different assump-
tions about where the home directory is located, for example:

� Internet Explorer
C:\windows_dir\Java\autodesk\mapguide\6.0

� Netscape
C:\Programs\Netscape\users\username\.autodesk\mapguide\6.0

� Solaris
/home/username/.autodesk/mapguide/6.0

Browser Differences with Java Edition

� If a user with Internet Explorer requests data beyond a firewall, Autodesk
MapGuide Viewer, Java Edition fails unless the browser has already been
through proxy authorization. A simple workaround for this is to set the
browser’s home page to a site outside the firewall.

� If a map was authored so that double-clicking a feature runs a JavaScript
command instead of opening an HTML page, the command might fail,
depending on the browser. For example, if the URL for a map feature is set
to:

javascript:alert("This is a private residence.")

users will receive an error message when they double-click that map fea-
ture in Internet Explorer. This is because different browsers support differ-
ent protocols in the Java network library (the previous example illustrates
that Internet Explorer does not support the JavaScript protocol in the
Java network library).

Communicating with the Plug-In from a Java
Applet

Netscape’s LiveConnect technology makes it possible to write a Java applet
that communicates with the Autodesk MapGuide Viewer Plug-In API. If you
choose to develop your application this way, you will need to know how to:

� Access Autodesk MapGuide Viewer Plug-In from a Java applet

� Call JavaScript functions from an Applet

The following sections cover these topics. You may also need to handle
events for Autodesk MapGuide Viewer Plug-In from your applet. For more
information about how to do this, see Chapter 5, “Handling Events.”
40 | Chapter 3 Accessing Maps

Accessing the Plug-In from a Java Applet

You can access Autodesk MapGuide Viewer Plug-In from your Java applet.

To access Autodesk MapGuide Viewer Plug-In

1 Copy the npmapv32.zip file installed in your Netscape Plugins folder to a
folder in your Java development environment, so that your Java compiler
can import Autodesk MapGuide classes to your Java applet.

2 Write a setMap function in your applet that takes a parameter referencing
the map and then storing the reference for future use. For example:

Private MGMap myUSAMap;
Public void setMap (MGMap map1)

{
myUSAMap = map1;

}

3 Add your applet to the HTML page. You must include the MAYSCRIPT
attribute in the APPLET tag to give the applet permission to interact with
JavaScript. For example:

<APPLET code="plugInApplet" NAME="obs" WIDTH=400 HEIGHT=300
MAYSCRIPT>

.
.

.
</APPLET>

4 If you have not already done so, embed Autodesk MapGuide Viewer Plug-
In in the HTML page as shown in the following example (for more infor-
mation, see “Embedding a Map,” on page 22). Use the following code:

<EMBED
SRC="http://www.mapguide.com/maps/usa.mwf?STATUSBAR=OFF"

NAME="map" WIDTH=300 HEIGHT=200 BORDER=0>

5 Enter the following code into your HTML page:

<SCRIPT LANGUAGE="JavaScript">

function Init()
{

var map = document.map;
var obs = document.obs;
obs.setMap(map);

}
</SCRIPT>

<BODY onLoad="Init();"
.
.
.
</BODY>
Communicating with the Plug-In from a Java Applet | 41

This code calls the Init function, which is placed within the onLoad
event, which is inserted into the BODY tag. This prevents errors by loading
the map before any code tries to access it. Init passes the embedded map
object into the setMap function in the applet. Now you can make any API
call to the example file, myUSAMap, in your applet. For instance:

Public void getViewerInfo()
{

myUSAMap.aboutDlg();
}

The API is available from Autodesk MapGuide classes in the npmapv32.zip
file you copied in Step 1.

Calling JavaScript Functions from a Java Applet

You can call JavaScript functions in your HTML page from a Java applet.

To access JavaScript from a Java Applet

1 Import the netscape.javascript package into your Java applet code. You can
usually find this package in the \Program\Java\Classes\java40.jar file in
the Netscape browser root directory. You can download this filw from
http://developer.netscape.com/software/jdk/download.html. This pack-
age provides access to the JSObject class containing the getWindow
method, which enables you to call JavaScript methods from your applet.

2 The syntax for calling a JavaScript function from your applet is:

JSObject.getWindow(applet instance).call("function name",
parameters)

If you want to forward the onDigitizedCircle event to a JavaScript
function called onDigitizedCircleHandler, you must first put all of
the parameters into a java.lang.Object array before you can call
onDigitizedCircleHandler. Since the fourth parameter of the
onDigitizedCircle event is not derived from the java.lang.Object
class, you need to wrap it as a java.lang.Double object:

public void onDigitizedCircle(MGMap map, String units, MGPoint
center, double radius)
{

Object[] params = new Object[4];
params[0] = map;
params[1] = units;
params[2] = center;
params[3] = new Double(radius);
JSObject.getWindow(this).call("onDigitizedCircleHandler",

params);
}

42 | Chapter 3 Accessing Maps

Accessing Secure Data

Map authors can control whether developers can use the getVertices and
getLayerSetup methods to access coordinate values and/or map layer
setup data. Map authors control the security of this data from the Map Layer
Properties dialog box in Autodesk MapGuide Author. If map authors allow
access to the API, they can also stipulate that the application must send in a
specific passkey first. If you are building an application for a map that
requires a passkey to access the coordinate values and/or the layer setup data,
you will need to get the passkey from the map author and pass it in with the
unLock method to enable the getVertices and getLayerSetup methods.
Remember that users can view any embedded scripts in HTML, so in some
cases you may not want to hard code your passkey in your Web page. To keep
the passkey secure, we recommend that you implement one of the following
techniques:

� Create an application that includes one frame that displays the map only.
Be sure that the map fills up the entire frame. In this case, users will not
be able to view the source code of the frame that displays the map. You
can then hard code the passkey in the source code of that frame.

� Write a Java applet that makes a request for the passkey to your Autodesk
MapGuide Server and then returns the passkey to the script in the Web
page. Call this applet in your embedded script after making sure that the
user has met your security criteria.

� Write your entire Autodesk MapGuide Viewer application in a Java applet.

Handling Busy State and Map Refresh

This section describes the map busy state and the techniques for coordi-
nating when and how to refresh a displayed map. When Autodesk MapGuide
Viewer refreshes the map display, it can cause errors in your application
unless you take the correct steps to prevent them. You need to familiarize
yourself with the way that the Autodesk MapGuide Viewer API is designed so
you can understand how to code your application correctly.

About the Busy State

Autodesk MapGuide Viewer enters a busy state whenever it refreshes the
display, and the busy state does not end until the data has been received from
the server and the display is updated or refreshed.
Accessing Secure Data | 43

There are some important points to remember about the busy state:

� In general, most write methods and properties are affected by the busy
state and return a -1 (busy) error code when called during a busy state.
Most read methods and properties are not affected by the busy state. How-
ever, there are exceptions to both of these rules. The best way to learn
which methods and properties do not work during the busy state is to
view the method/property descriptions in the Autodesk MapGuide Viewer
API Help.

� When your Autodesk MapGuide Viewer application calls an API method
that causes a busy state, Autodesk MapGuide Viewer can return control to
the application and then go to the next method while still in the busy state.

To avoid errors, you need to make sure that Autodesk MapGuide Viewer is
not in a busy state when your application calls one of the methods that are
affected by the busy state.

Your application is most likely to fail when it is about to call two or more API
methods—the first an API method that automatically invokes a refresh, and
subsequent ones methods that don’t work during the busy state. For example:

function selectAndZoomToPointObject(mgObj)
{

var map = getMap();
var sel = map.getSelection();
sel.clear();
sel.addObject(mgObj);
map.zoomSelected(); // Busy state begins in zoomSelected()
map.setWidth(5, "KM"); // Error occurs because setWidth() fails

// if called during the busy state
}

To avoid errors, you need to make sure that Autodesk MapGuide Viewer is
not in a busy state when your application calls one of these methods. To do
this you can:

� Control map refresh using the autoRefresh flag

� Detect when a map refresh is about to happen

� Detect a change in the busy state

Each of these approaches is described in the following sections.
44 | Chapter 3 Accessing Maps

Controlling Map Refresh Operations

You can ensure that Autodesk MapGuide Viewer will not enter a busy state
by controlling when display refreshes occur. The first step is to remember
that display refreshes always occur in the following instances:

� When the autoRefresh flag is set to True with MGMap.setAutoRefresh,
and the application calls an API method that requires an automatic refresh
such as MGMap.zoomSelected. Methods requiring an automatic refresh
are noted in the Autodesk MapGuide Viewer API Help.

� Your application calls zoomGotoDlg, zoomGotoLocation, setUrl, or
refresh. These methods always invoke a display refresh, even if the
autoRefresh flag is set to false. The only exception is if you call one of
these methods from onViewChanging or onMapLoaded event handling
code. Under these circumstances, the methods will fail and will set error
code to -14 (refresh disabled) because the onViewChanging and
onMapLoaded events always disable the autoRefresh flag.

Using the autoRefresh Flag

To develop an application that executes smoothly, you need to prevent busy
states while the application calls methods in the API that do not work during
the busy state. To do this, you need to disable the autoRefresh flag.

To disable the autoRefresh Flag

1 Set the autoRefresh flag to False immediately before calling the first
method.

2 Reset the autoRefresh flag to True.

3 Call the refresh method immediately after your application calls the
other methods that do not work during the busy state. Simply setting the
autoRefresh flag back to True with MGMap.setAutoRefresh does not
refresh the map. For example:

function selectAndZoomToPointObject(mgObj)
{

var map = getMap();
var sel = map.getSelection();
map.setAutoRefresh(false); // Prevent busy state from happening

// when zoomSelected is called
sel.clear();
sel.addObject(mgObj);
map.zoomSelected();
map.setWidth(5, "KM");
map.setAutoRefresh(true); // Reset the autoRefresh flag
map.refresh(); // Update the display

}

Handling Busy State and Map Refresh | 45

AutoRefresh Flag Caveats

While autoRefresh is disabled, methods that would normally cause
refreshes to occur do not, and the following types of operations may not
work as expected:

� Enumerating map features on dynamic layers after a pan or a zoom—
If your application tries to return the number of features on a dynamic
layer prior to a refresh, it will return the number that existed before the
pan or zoom occurred.

� Querying on or modifying selected features—If your application per-
forms queries or modifications on features on dynamic layers prior to a
refresh, the features may not actually exist anymore, or additional features
that were added to the selection may be missing.

� Operations that require user interaction—Methods such as
digitizePoint and digitizeRectangle require users to click or drag
the mouse for their input parameters. However, users may be positioning
the cursor over a version of the map that is different from the one on
which the methods will be performing calculations.

� Printing maps on dynamic layers and buffering features on dynamic
layers—Features that have not been downloaded onto the displayed map
may not appear in the printout or the buffer.

Detecting Map Refreshes

Autodesk MapGuide Viewer fires the onViewChanging and onViewChanged
events both when a map display refresh is about to happen and when one
just happened. You can write event-handling code in your application to
respond to these events (see Chapter 5, “Handling Events”). However, before
the Autodesk MapGuide Viewer fires these events, it disables the
autoRefresh flag. When writing your event-handling code for
onViewChanging, be sure to avoid methods that don’t work when the
autoRefresh flag is disabled, as described in the previous section.

Detecting a Change in the Busy State

Autodesk MapGuide Viewer fires the onBusyStateChanged event when the
busy state changes. You can write event-handling code for this event to enable
and disable specific user interface elements, such as buttons, in your application.
46 | Chapter 3 Accessing Maps

Controlling Intermediate Update Map Redraw
Operations

You can use the MGMap.getIntermediateUpdatesEnabled and
MGMap.setIntermediateUpdatesEnabled methods to control how
frequently Autodesk MapGuide Viewer redraws a map. By default, maps are
updated every 1.5 seconds, enabling the end user to progressively view a map
as it is being rendered, rather than waiting until the entire map is complete.
Changes to the intermediate update setting takes effect on the next redraw
or refresh operation. The following JavaScript functions disable and re-
enable intermediate updates:

function disableIntermediateUpdates()
{

var map = getMap();
var status = map.getIntermediateUpdatesEnabled();
if (status == true) map.setIntermediateUpdatesEnabled(false);

}

function enableIntermediateUpdates()
{

var map = getMap();
var status = map.getIntermediateUpdatesEnabled();
if (status == false) map.setIntermediateUpdatesEnabled(true);

}

Handling Errors

Every application should track and handle errors. The Autodesk MapGuide
Viewer API has error tracking methods and properties you can use to debug
your applications.

Getting Error Codes

Every time an API method is run or a property is accessed, Autodesk
MapGuide updates the MGError object. This object contains error informa-
tion for the most recently executed method or property.
Handling Errors | 47

To get the most recently called method error code

1 Call the MGMap.getLastError method to get the MGError object.

2 Next call the MGError.getCode method to get the error code. For
example:

function checkErrorCode()
{

var map = getMap();
var code = map.getLastError().getCode();
alert("ERROR: " + code);

}

Checking for Incorrect Argument Types

If you call an API method with incorrect argument types, by default,
Autodesk MapGuide Viewer has the method do nothing and flags the error
in MGError. You can see which argument was incorrect by calling the
MGError.getArg method.

To check for an incorrect argument type for the most recently called method

1 Call the MGMap.getLastError method to get the MGError object.

2 Next call the MGError.getArg method to get the number of the incorrect
argument. For example:

function checkArgType()
{

var map = getMap();
var arg = map.getLastError().getArg();
alert("ERROR: " + arg);

}

To see the argument types for any API method, locate that method’s Help
topic in the Autodesk MapGuide Viewer API Help.

Debugging an Application

In addition to checking MGError, you can call the
MGMap.enableApiExceptions and MGMap.disableApiExceptions
methods to throw or not throw exceptions. When exceptions are enabled
and the MGError code is set to a non-zero value, Autodesk MapGuide throws
an exception. Depending on your development environment, the exception
will halt your code and send an error message containing the line number of
the error to the screen.
48 | Chapter 3 Accessing Maps

�

�

�

�

4
Working with Map Layers,
Map Features, and Printing
Overview

Working with map layers

Working with map features

Working with printing
This chapter shows you how to write code for common

tasks your application can perform with the Autodesk

MapGuide® Viewer API. Once your application can

manipulate a map, you may want it to control other

Autodesk MapGuide Viewer events, as described in

Chapter 5, “Handling Events.”
49

Overview

Throughout this chapter you will find simple JavaScript code samples that
show you how to perform basic Autodesk MapGuide Viewer tasks in your
application. You will learn how to work with map layers, features, and how
to customize map printouts.

Note that we refer to JavaScript code modules as functions, reserving the term
method for the Autodesk MapGuide Viewer API. Also note that although
spatial data on the map consists of map features, the methods and properties
in the Autodesk MapGuide Viewer API that work with map features use the
term object instead of feature. This difference in terminology exists because
map features were called map objects in previous releases of Autodesk
MapGuide. Be careful not confuse the term object in these API names with the
object-oriented programming concept of objects. For example, the
addObject method adds a map feature to the selection. Likewise, the
MGMapObject object represents map features.

Working with Map Layers

This section describes common tasks your application can perform with
Autodesk MapGuide map layers.

Counting Map Layers

The countLayers function counts the layers in a map and displays the
count in a dialog box:

function countLayers()
{

var map = getMap();
var layers = map.getMapLayersEx();
var cnt = layers.size();
alert("This map has " + cnt + " layer(s).");

}

The function starts by calling the getMap function and assigning its return
value to a variable called map:

var map = getMap();

Remember that getMap is a custom function that detects the user’s browser
type and returns an MGMap object using the syntax required by that browser
(see page “Map Access for ActiveX Control and Plug-In” on page 32).
50 | Chapter 4 Working with Map Layers, Map Features, and Printing

Next, the countLayers function calls the getMapLayersEx method, an
Autodesk MapGuide Viewer API method that returns an MGCollection
object containing all the layers defined in the map. The layer collection is
assigned to the layers variable:

var layers = map.getMapLayersEx();

Then it calls the MGCollection:size method, which returns a count of the
layers in the collection; that number is assigned to the cnt variable:

var cnt = layers.size();

Finally, countLayers displays the count, using the JavaScript alert func-
tion:

alert("This map has " + cnt + " layer(s).");

Displaying the layer count

Listing Map Layers

The listLayers function counts the layers in a map and displays their
names:

function listLayers()
{

var map = getMap();
var layers = map.getMapLayersEx();
var cnt = layers.size();
var msg;
var i;
for (i = 0; i < cnt; i++)
{

var layer = layers.item(i);
msg = msg + layer.getName() + "\n";

}
alert(msg);

}

The function starts by getting an instance of the map, a layer collection, and
a layer count, using the same code as the previous example:

var map = getMap(); // get an MGMap object
var layers = map.getMapLayersEx(); // create layer collection
var cnt = layers.size(); // get layer count
Working with Map Layers | 51

Next, the listLayers function uses a for loop to cycle through the layer
collection, placing all the layer names in the single msg variable:

var msg; // empty variable to hold layer names
var i; // counter variable; used by loop
for (i = 0; i < cnt; i++) // iterate layer count times
{

var layer = layers.item(i); // get next layer
msg += layer.getName() + "\n"; // add layer name to msg

}

The cnt variable tells the for loop to iterate once for each map layer. At each
iteration, the loop counter variable (i) is incremented and the following
statements are processed:

var layer = layers.item(i); // get next layer
msg += layer.getName() + "\n"; // add layer name to msg

The first statement uses the item method to select a layer from the collection
and assign it to a variable called layer.

The second statement operates on the layer variable, first using the
getName method to obtain the name of the layer represented by that vari-
able, and then assigning that name to the msg variable. In addition to the
layer name, msg is also assigned its previous contents and the JavaScript
newline character, \n. This has the effect of adding each layer name to msg
as a separate text line.

Finally, listLayers uses the JavaScript alert function to display the
contents of the variable msg in an alert box:

alert(msg);

alert box displaying layer names
52 | Chapter 4 Working with Map Layers, Map Features, and Printing

Adding a Map Layer

The doAddLayer function adds a named layer to a map:

function doAddLayer()
{

if (navigator.appName == "Netscape")
document.map.addMapLayer("hydro.mlf", document.obs);

else
window.map.addMapLayer("hydro.mlf");

}

The function starts by checking the browser type. If the browser is Netscape,
doAddLayer calls the addMapLayer method, supplying it with the name of
an existing map layer file (MLF) and the name of the event observer:

document.map.addMapLayer("hydro.mlf", document.obs);

If the browser is Internet Explorer, doAddLayer calls the addMapLayer
method, supplying only the layer name as an argument:

window.map.addMapLayer("hydro.mlf");

Because addMapLayer takes different arguments depending on the browser
type, we did not bother to return the map object with getMap. Instead, we
supplied the map object using the syntax required by each browser.

Note If you support the Netscape browser, you must provide the name of the
event observer as a second argument to addMapLayer.

Linking Map Layers

Using Autodesk MapGuide Author, you can set map layer attribute properties
for specific display ranges. (Refer to “Setting Style Properties for Layers” in
the Autodesk MapGuide User’s Guide.) For example, you might set a layer to be
invisible when a user zooms out. Using the Autodesk MapGuide Viewer API,
you can extend this functionality by linking layers to one or more designated
control layers. Then if an action, such as zooming out, causes a control layer
to become invisible, the API can make the linked layers invisible as well.

In the following example, the onViewChanging function checks the visi-
bility of three control layers named States, Counties, and ZIP Codes. If
one or more of the control layers is visible, onViewChanging makes all other
map layers visible; if none of the control layers is visible, onViewChanging
suppresses visibility of all other map layers.
Working with Map Layers | 53

The function is named onViewChanging because it’s triggered by the
Autodesk MapGuide Viewer API event of the same name. Whenever an event
is triggered, Autodesk MapGuide Viewer checks for a function whose name
matches the event name. If the function is found, Autodesk MapGuide
Viewer invokes it, passing arguments that vary by event.

onViewChanging takes an MGMap object as an argument passed by the
onViewChanging event. Because the event provides an instance of the map
object, we don’t need to obtain it with getMap. For example,the following
function links map layers:

function onViewChanging(thisMap) // ’thisMap’ is MGMap object provided by event
{

var states = thisMap.getMapLayer ("States");
var countries = thisMap.getMapLayer("Counties");
var zipCodes = thisMap.getMapLayer("ZIP Codes");
var vis =

(states.getVisibility() ||
counties.getVisibility() ||
zipCodes.getVisibility());

var layers = thisMap.getMapLayersEx();
for (var i = 0; i < layers.size(); i++)
{

var layer = layers.item(i);
if (!layer.equals(states)

&& !layer.equals(counties) && !layer.equals(zipCodes))
{

layer.setVisibility(vis);
}

}
}

The function starts by using the getMapLayer method to return each of the
control layers as objects. Those objects are assigned to three variables named
states, counties, and zipCodes.

Next, onViewChanging uses the getVisibility method to determine if
any of the control layers are visible. If at least one control layer is visible (that
is, if states is visible or counties is visible or zipCodes is visible),
getVisibility returns the boolean value True, thus setting the vis vari-
able to True. Otherwise, it sets vis to the False value.

Then onViewChanging uses the getMapLayersEx method to create a layer
collection and assign it to the layers variable.

Finally, the function uses a for loop to cycle through each map layer. Each
time the loop encounters a layer that is not one of the control layers, that
layer is made visible or invisible, depending on the value of the vis variable.
54 | Chapter 4 Working with Map Layers, Map Features, and Printing

Toggling Map Layer Visibility On and Off

The layerToggle function toggles the visibility of a map layer that is spec-
ified when the function is invoked:

function layerToggle(l_name)
{

var map = getMap();
var layer = map.getMapLayer(l_name);
if (layer == null)

alert("layer not found.");
else
{

layer.setVisibility(!layer.getVisibility());
map.refresh();

}
}

This function takes a layer name as an argument and might be called as
follows:

<FORM>
<INPUT TYPE="button" VALUE="Toggle Hydro"
ONCLICK="layerToggle('Hydro')">
</FORM>

The layerToggle function starts by getting an instance of the map object.
Then it passes the function argument, l_name, to the getMapLayer method.
The getMapLayer function returns the specified layer, or it returns null if
the layer is not found. The getMapLayer return value is then assigned to the
layer variable:

var map = getMap();
var layer = map.getMapLayer(l_name);

Next, the function checks the value of the layer variable. If it is null, an
alert displays; otherwise the setVisibility method is used to toggle the
layer’s visibility to the opposite of its current state:

if (layer == null)
alert("layer not found.");

else
{

layer.setVisibility(!layer.getVisibility());
map.refresh(); // after changing visibility, refresh map

}

Note the use of the not operator (!) with the getVisibility method. This
has the effect of checking the layer’s visibility and returning the opposite of
what it finds.
Working with Map Layers | 55

Working with Map Features

This section describes common tasks your application can perform with
Autodesk MapGuide map features.

Getting Keys of Selected Map Features

In this example, the doGetKey function displays a dialog box showing the
keys of selected map features (keys are unique values that are used to identify
individual map features). If no features are selected, an alert displays
prompting the user to make a selection:

function doGetKey()
{

var map = getMap();
if (map.getSelection().getNumObjects() == 0)
{

alert ("Please make a selection first.");
return;

}
var sel = map.getSelection();
var objs = sel.getMapObjectsEx(null);
var cntObjects = objs.size();
var msg = "Keys of selected features are:\n";
var i;
for (i = 0; i < cntObjects; i++)
{

var obj = objs.item(i);
var key = obj.getKey();
msg = msg + obj.getMapLayer().getName() + " " + key + "\n";

}
alert(msg);

}

The function starts by getting an instance of the MGMap object:

var map = getMap();

Then it uses two API methods to see if any map features are selected. Note
that the methods are concatenated; the first method, getSelection, oper-
ates on the map and returns a selection object, which is then passed to the
second method, getNumObjects, for processing. If no map features are
selected, an alert displays and the function terminates; otherwise, the selec-
tion is assigned to the sel variable:

if (map.getSelection().getNumObjects() == 0)
{

alert ("Please make a selection first.");
return;

}
var sel = map.getSelection();
56 | Chapter 4 Working with Map Layers, Map Features, and Printing

Next, the doGetKey function calls the getMapObjectsEx method and
passes its return value (a collection of the selected map features) to a variable
called objs. Note that if you use getMapObjectsEx with a map layer, it
returns an MGCollection object made up of map features of a map layer, but
by using the method with the selection object, and by passing it null as a
parameter, it returns the map features in the current selection only:

var objs = sel.getMapObjectsEx(null);

Then the function calls the MGCollection.size method, which returns a
count of the objects in the collection; that number is assigned to the
cntObjects variable:

var cntObjects = objs.size();

After that, doGetKey uses a for loop to cycle through the feature collection,
placing all of the feature names in a single msg variable:

// variable to hold feature names
var msg = "Keys of selected features are:\n";
var i; // loop counter variable
for (i = 0; i < cntObjects; i++) // iterate from 0 to cntObjects
{

var obj = objs.item(i);
var key = obj.getKey();
msg = msg + obj.getMapLayer().getName() + " " + key + "\n";

}

The cntObjects variable tells the for loop to iterate once for each object.
At each iteration, the loop counter variable (i) is incremented and the
following statements are processed:

var obj = objs.item(i);
var key = obj.getKey();
msg = msg + obj.getMapLayer().getName() + " " + key + "\n";

The first statement uses the item method to select an object from the collec-
tion and assign it to a variable called obj.

The second statement operates on the obj variable, first using the getKey
method to obtain the key of the feature represented by that variable, and
then assigning that name to the msg variable. The last line puts it all together
by concatenating the previous contents of msg, a layer name obtained by the
getName method, a space character, the contents of key, and a JavaScript
newline. After all selected features have been added to msg, the contents of
the variable are displayed in a JavaScript alert box:

alert(msg);
Working with Map Features | 57

The following screen shows keys of the selected features displayed in the
alert box.

alert box displaying keys of selected features

Getting Coordinates of a Selected Map Feature

The doGetCoordinates function displays a dialog box showing the coordi-
nates of a selected map feature:

doGet Coordinates Function

function doGetCoordinates()
{

var map = getMap();
var sel = map.getSelection();
var layer = map.getMapLayer("Parcels");
if (layer == null)
{

alert("No Parcels layer found in this map.");
return;

}
if ((sel.getNumObjects() > 1) || (sel.getNumObjects() == 0) ||

(sel.getMapObjectsEx(layer).size() == 0))
{

alert("Select only one parcel, please.");
return;

}
var obj = sel.getMapObjectsEx(layer).item(0);
var vertices = map.createObject("MGCollection");
58 | Chapter 4 Working with Map Layers, Map Features, and Printing

The doGetCoordinates function starts by using getMap to get an instance
of the map; then it gets the current selection and assigns it to the sel variable:

var map = getMap();
var sel = map.getSelection();

Then doGetCoordinates uses the getMapLayer method to select the
Parcels layer and assign it to a variable named layer; if the Parcels layer
doesn’t exist in the map, an alert displays and the function terminates:

var layer = map.getMapLayer("Parcels");
if (layer == null)
{

alert("No Parcels layer found in this map.");
return;

}

Next, doGetCoordinates uses the getNumObjects and
getMapObjectsEx methods to verify that one, and only one, feature is
selected, and that the current layer is not empty. If the criteria are not met,
an alert displays and the function terminates:

if ((sel.getNumObjects() > 1) ||
(sel.getNumObjects() == 0) ||
(sel.getMapObjectsEx(layer).size() == 0))

{
alert("Select only one parcel, please.");
return;

}

var cntVertices = map.createObject("MGCollection");
var res = obj.getVertices(vertices, cntVertices);
if (res == 0)
{

alert("No access to coordinate information.");
return;

}
msg = "Parcel:" + obj.getKey() + "\n";
msg = msg + "Coordinates in MCS unit\n";
for(var i = 0; i < cntVertices.item(0); i++)
{

var pnt = vertices.item(i);
msg = msg + pnt.getX() + "," + pnt.getY() + "\n";

}
alert(msg);

}

doGet Coordinates Function
Working with Map Features | 59

Otherwise, the function creates some more variables. The obj variable
contains the first (and only) object in the current selection. The vertices
and cntVertices variables hold empty MGCollection objects:

var obj = sel.getMapObjectsEx(layer).item(0);
var vertices = map.createObject("MGCollection");
var cntVertices = map.createObject("MGCollection");

Then doGetCoordinates uses the getVertices method to get the coordi-
nates and number of vertices of obj, our selected parcel feature. The values
getVertices obtains are passed to the empty vertices and cntVertices
collections.

If getVertices is successful, it returns an integer telling the number of
vertices it found; otherwise, it returns zero. The getVertices return value
is passed to a variable called res. If getVertices returns zero, an alert
displays and the function terminates:

var res = obj.getVertices(vertices, cntVertices);
if (res == 0)
{

alert("No access to coordinate information.");
return;

}

Next, doGetCoordinates uses a for loop to cycle through the vertices
collection, placing all of the coordinate listings in a single msg variable:

msg = "Parcel:" + obj.getKey() + "\n";
msg = msg + "Coordinates in MCS unit\n";
for(var i = 0; i < cntVertices.item(0); i++)
{

var pnt = vertices.item(i);
msg = msg + pnt.getX() + "," + pnt.getY() + "\n";

}

The cntVertices variable tells the for loop to iterate once for each vertex
in the object. At each iteration, the loop counter variable (i) is incremented
and the following statements are processed:

var pnt = vertices.item(i);
msg = msg + pnt.getX() + "," + pnt.getY() + "\n";

The first statement uses the item method to select a vertex from the collec-
tion and assign it to a variable called pnt.

The second statement operates on the pnt variable, using the getX and getY
methods to get the vertex coordinates and assign them to msg. As with the
previous examples, a new line is added to msg each time the for loop iter-
ates. After all coordinates have been added to msg, the contents of the vari-
able are displayed in a JavaScript alert box:

alert(msg);
60 | Chapter 4 Working with Map Layers, Map Features, and Printing

Invoking Select Radius Mode

The doSelectRadius function gets an instance of the map and uses that
instance to call the selectRadiusMode method:

function doSelectRadius()
{

var map = getMap();
map.selectRadiusMode();

}

Radius Mode allows the user to digitize a circle and select all map features
that fall within that circle.

Zooming In on Selected Features

The zoomSelect function zooms in to a selected feature:

function zoomSelect()
{

var map = getMap();
var selected = map.getSelection().getMapObjectsEx(null);
if (selected.size()>0)

map.zoomSelected();
else

alert("Nothing selected.");
}

First, the function gets an instance of the MGMap object. Then, it uses two
concatenated API methods to retrieve selected features and pass them to the
variable selected. The first method, getSelection, returns a selection
object, which is used by the second method, getMapObjectsEx. If you use
getMapObjectsEx with a map layer, it returns an MGCollection object
containing all features on the layer, but by using getMapObjectsEx with
the selection object and passing it null, it returns the features in the current
selection only:

var map = getMap();
var selected = map.getSelection().getMapObjectsEx(null);

Next, zoomSelect uses the size method to see how many features are
selected. If one or more features are selected, the zoomSelected method is
invoked, causing Autodesk MapGuide Viewer to zoom to those features, as
shown in the illustrations following the example. Otherwise, an alert
displays:

if (selected.size() > 0)
map.zoomSelected();

else
alert("Nothing selected.");
Working with Map Features | 61

Before calling zoomSelected() After calling zoomSelected()

Counting Map Features

The showFeatureCount function counts the features on each map layer and
adds that count to the legend:

var legendSet; // Global variable, declared outside of function

function showFeatureCount()
{

if (legendSet)
return;

var map = getMap();
if (map.isBusy() == false)
// can also be written as 'if (!map.isBusy())'
{

var layers = map.getMapLayersEx();
var cnt = layers.size();
var i;
var msg;
for (i = 0; i<cnt; i++)
{

var layer = layers.item(i);
var objectCount = layer.getMapObjectsEx().size();
var label = layer.getLegendLabel();
label = label + " " + objectCount + " features";
layer.setLegendLabel(label);

}
}
legendSet = true;

}

62 | Chapter 4 Working with Map Layers, Map Features, and Printing

The showFeatureCount function starts by checking the status of the global
variable, legendSet. If legendSet is set to True, showFeatureCount
terminates:

if (legendSet)
return;

This keeps showFeatureCount from printing multiple messages to the
legend if the user clicks the button more than once.

Next, showFeatureCount creates an instance of the map and checks to see
if the map is in a busy state (see “Handling Busy State and Map Refresh” on
page 43 for more information about the busy state):

var map = getMap();
if (map.isBusy() == false)

If the map is not busy, the function continues.

First, it uses the getMapLayersEx method to obtain a layer collection and
assign it to a variable called layers. Then it uses the size method to get the
number of layers and assign that number to the cnt variable:

var layers = map.getMapLayersEx();
var cnt = layers.size();

Then it creates a loop that counts the features in each layer and uses the
getLegendLabel and setLegendLabel methods, as shown in the illustra-
tions following the example, to report the map feature counts in the map
legend:

var i;
var msg;
for (i = 0; i<cnt; i++)
{

var layer = layers.item(i);
var objectCount = layer.getMapObjectsEx().size();
var label = layer.getLegendLabel();
label = label + " " + objectCount + " features";
layer.setLegendLabel(label);

}

Finally showFeatureCount sets the global legendSet variable to True.
This keeps the function from running again until the page containing the
map is refreshed.

legendSet = true;
Working with Map Features | 63

The following screens compare the results before and after calling
showFeatureCount.

Legend before calling showFeatureCount Legend after calling showFeatureCount

Working with Printing

Autodesk MapGuide lets map authors and Autodesk MapGuide Viewer users
control how the printed map appears on a page. For example, a map author
might create a custom symbol that displays only in the printout. Also, when
printing from Autodesk MapGuide Viewer, a user might choose to change
the map title or suppress page elements such as the legend, scale bar, or
North arrow. The API supports these user-interface features and also provides
additional functionality, allowing you to write code to change the title font,
add a custom symbol, or control the size and position of any page element
on the printout.

As a developer, you can specify that two events be fired each time a map is
sent to the printer. The first event, onBeginLayout, is fired after a user clicks
OK in the Print dialog box but before Autodesk MapGuide Viewer lays out
the page elements that will be sent to the printer. The second event,
onEndLayout, is called after Autodesk MapGuide Viewer lays out the page
elements but before the elements are sent to the printer. By writing event
handler functions for these events, you can intercept the page before it gets
to the printer and customize it to your liking.

Note map features counts
64 | Chapter 4 Working with Map Layers, Map Features, and Printing

Setting the Print Priority

As shown above, you can write an onEndLayout event handler that uses
MGPrintLayout, MGPageElement, and MGExtentEx to control the place-
ment of printed page elements. It is possible, and sometimes desirable, to
place page elements on top of each other. For example, you might want to
place the North arrow on top of an empty spot of ocean in your map. Of
course, this doesn’t do your user much good if the ocean prints on top of the
North arrow and hides it.

To solve this problem, each page element is assigned a default print priority.
A print priority is a positive floating-point number between 0.0 and 100.0
that describes the relative printing order of a page element. The element with
the lowest number is printed first. The element with the highest number is
printed last. You can read and change an element’s priority with the
getPrintPriority and setPrintPriority methods, but the default
values are as follows:

Element Default Print Priority

map 10.0

legend 20.0

title 30.0

URL 40.0

date/time 50.0

scale bar 60.0

North arrow 70.0

custom elements 80.0
Working with Printing | 65

The following example shows an onEndLayout event handler, written in
JavaScript, that forces the title to be printed after the North arrow:

function onEndLayout(layout, info)
{

// retrieve arrow and map elements
var el_arrow = layout.getPageElement("mg_northarrow");
var el_map = layout.getPageElement("mg_map");

// force arrow to have higher print priority than map
el_arrow.setPrintPriority(el_map.getPrintPriority() + 1);

}

Enabling the Print Events

By default, the onBeginLayout and onEndLayout events are not fired; you
enable and disable them using the enablePrintingEvents and
disablePrintingEvents methods. For Autodesk MapGuide Viewer Plug-
In and Autodesk MapGuide Viewer, Java Edition, you will also need to use
the setPrintingObserver method to specify the event observer. Here is
one way to write a JavaScript function that enables print events:

function enable_print_events()
{

var map = getMap();
map.enablePrintingEvents();
if (navigator.appName == "Netscape")

map.setPrintingObserver(obs);
}

66 | Chapter 4 Working with Map Layers, Map Features, and Printing

Positioning Page Elements with Page Coordinate
System Units

Page element extents specified through the API are expressed in Page Coor-
dinate System (PCS) units. The origin (0,0) of this system is located at the
upper-left corner of the paper. Its exact location depends on the current left
and top margins. Unlike the coordinate system that is used on a map, the Y
values increase in the downward direction and the X values increase to the
right. Like the device unit type, the default PCS unit type is a pixel.
Working with Printing | 67

Adding Custom Page Elements

You can add custom page elements to the printout. Currently, the API can
only access symbols in the API symbol list. The API symbol list is a MWF or
EMF file containing a small set of predefined symbols. However, additional
symbols can be added to the list using Autodesk MapGuide® Author. Refer to
the topics “Adding Symbols for Use with the Viewer API” and “API Symbol
Manager dialog box” in the Autodesk MapGuide Help for more information.

The following example shows an onEndLayout event handler, written in
JavaScript, that adds a custom logo to the top left corner of the printout. Note
that the logo is rotated 90°. This example assumes that the myLogo symbol
has been added to the API symbol list by the map author:

function onEndLayout(layout, info)
{

// add 'myLogo' symbol to layout and return as 'sym'
var sym = layout.addSymbol("myLogo");

// function ends if symbol doesn't load properly
if (sym == null) return;

// display symbol the top-left corner of page
MGExtentEx ext = sym.getExtent();
ext.set(0, 0, 600, 600);
sym.setExtent(ext);

// rotate symbol
var attr = sym.getSymbolAttr();
if (attr != null) {

attr.setRotation(-90.0);
}

}

68 | Chapter 4 Working with Map Layers, Map Features, and Printing

�

�

�

�

5
Handling Events
Overview

Working with event
handlers

Setting up event handlers

Writing event handlers
This chapter describes how to design your Autodesk

MapGuide® Viewer application to handle Autodesk

MapGuide® events. Handling events gives you more con-

trol over how your application responds to actions by

users as they view maps. Once your application can han-

dle Autodesk MapGuide Viewer events, you may want to

add data query and update capabilities, as described in

Chapter 6, “Using Reports to Query and Update Data

Sources.”
69

Overview

Just as the Web browser has events that are triggered in response to actions
within the browser, Autodesk MapGuide has its own events that are triggered
by actions within Autodesk MapGuide Viewer. For example, if the user
selects a feature on the map, the onSelectionChanged event is triggered.
There are also events for when the mouse double-clicks, the map view
changes, and more. Events are useful because you can write code that is
executed only when certain events occur. For example, if the user clicks a
point on the map, you might want to call a function that updates text boxes
with the coordinates for that point (see “SDF Component Toolkit Applica-
tions” on page 171 for an example of this). This type of function, which
works only in response to an event, is called an event handler.

For Microsoft® Internet Explorer®, you write VBScript code to set up the
event handlers for your application. VBScript, a lightweight Visual Basic-like
scripting language. For Netscape® Navigator®, you need to set up event
observers. Event observers act as the link between the event and your event
handling code; they are triggered when an event occurs and then call the
event handler in response.

Working with Event Handlers

Netscape Navigator and Internet Explorer handle events differently, so if you
want to support both browsers, you need to write code for both. Code exam-
ples that work for both are described in“Setting Up Event Handlers” on
page 72 and “Writing Event Handlers” on page 78. To see a full working
event handling example, choose Help ➤ Contents ➤ Examples Advanced ➤
Event Handling example in the Autodesk MapGuide Viewer API Help.
70 | Chapter 5 Handling Events

Browser Differences

The following table summarizes the basic differences between how Netscape
Navigator and Internet Explorer handle events:

Event Observer Set Methods

There are some MGMap methods whose sole function is to allow you to set an
observer for a specific event. For example, when the map view changes (for
example, in response to a user panning or zooming), you can set the observer
for the onViewChanged by creating a function called onLoad (a browser
event) and inserting the MGMap.setViewChangedObserver method to set
the observer for the onViewChanged event. You can do this for each of the
events you want to handle. Note that specifying an observer is not required
for all events—just for the events you want to handle.

Netscape Navigator Internet Explorer

For Netscape Navigator, Autodesk
MapGuide provides an observer applet
that you embed in your application
using the <APPLET> tag.
For Autodesk MapGuide Viewer Plug-In,
this applet is called:
MapGuideObserver6.class
For Autodesk MapGuide Viewer, Java
Edition, it is called:
MapGuideObserver6J.class
You can use the same instance of the
observer applet for all events.

For Internet Explorer, you write a few lines
of VBScript code that tell Internet
Explorer the name of the event handler.
You must create a separate event handler
for each type of event you want to handle.

To call an Autodesk MapGuide method
that triggers an event, you pass the
Autodesk MapGuide observer as a
parameter.

Internet Explorer knows how to find the
event handler without being passed its
name because it assumes the event han-
dler name will match the event it is
handling.
Working with Event Handlers | 71

Setting Up Event Handlers

This section describes how to set up event handling for either Autodesk
MapGuide Viewer Plug-In, Autodesk MapGuide Viewer ActiveX Control, or
Autodesk MapGuide Viewer, Java Edition, or for all three.

Plug-In and Java Edition Event Handlers

As described in “Browser Differences” on page 71, Autodesk MapGuide
provides observer applets you can use for Autodesk MapGuide Viewer
Plug-In and Autodesk MapGuide Viewer, Java Edition event handling.

� For Autodesk MapGuide Viewer Plug-In, the applet is called
MapGuideObserver6.class.

� For Autodesk MapGuide Viewer, Java Edition, the applet is called
MapGuideObserver6J.class.

If your application is supporting both Autodesk MapGuide Viewer Plug-In
and Autodesk MapGuide Viewer, Java Edition, you need to detect which
Autodesk MapGuide Viewer is present on the client’s system. You can do this
by embedding a detection applet provided by Autodesk MapGuide. This
applet is included in an archive file called MGDetectClass.zip. The detection
applet can detect whether or not Autodesk MapGuide Viewer, Java Edition
has been installed on a client system.

To download event observer and detection applet code, choose Help ➤
Contents ➤ Plug-In/Java Edition Downloads in the Autodesk MapGuide
Viewer API Help. You can also download the Java source code for each applet,
edit the code, and then recompile it. However, scripting with Java is highly
browser-specific because of the differences in the Netscape Plug-In and
Microsoft ActiveX Control embedding architectures. Therefore, we recom-
mend that you use the observer applet as provided for event handling only.

Note If you are accessing the Autodesk MapGuide Viewer Plug-In API from a
Java applet, your applet needs to function as an event observer. See “Plug-In
Event Handler Example” on page 83.
72 | Chapter 5 Handling Events

To use Autodesk MapGuide detection and event observer applet

1 Embed the observer applet in your Web page, assigning a specific name to
it with the NAME attribute of the <APPLET> tag. If you are going to use
both types of applets, you must give them different names and use the
correct name in your method calls after you have detected which
Autodesk MapGuide Viewer your client is running.

2 Use the detection applet to determine which Autodesk MapGuide Viewer
(Autodesk MapGuide Viewer Plug-In or Autodesk MapGuide Viewer, Java
Edition) is running on the client machine.

3 Once you have detected which Autodesk MapGuide Viewer is running on
a client machine, invoke the event observer applet by calling a set
observer method like setSelectionChangedObserver or a method that
invokes an event, such as digitizePolylineEx.

For example, the following code shows how to check the Autodesk
MapGuide Viewer version and install the appropriate event observer applet
for Autodesk MapGuide Viewer Plug-In or Autodesk MapGuide Viewer, Java
Edition:

Installing Plug-In and Java Editions Observer Applets

<SCRIPT LANGUAGE="JavaScript">
// Embed the detect applet to check if the
// Autodesk MapGuide Viewer, Java Edition is installed
document.write('<APPLET');
document.write(' CODEBASE="detect_class"');
document.write(' ARCHIVE="MGDetectClass.zip"');
document.write(' CODE=MGDetectClass');

// Extract result from detector
tempurl = document.URL;
index = tempurl.indexOf("DETECTED=");
result = tempurl.substring(index, tempurl.length);

if (result == "DETECTED=true")
{

// The Autodesk MapGuide Viewer, Java Edition was installed,
// so we embed the Autodesk MapGuide Viewer, Java Edition
// Observer Applet and name it obsJava
document.write("<Applet CODE=\"MapGuideObserver6J.class\"

WIDTH=2 HEIGHT=2 NAME=\"obsJava\" MAYSCRIPT>");
document.write("</Applet>");

// After the page loads, the browser automatically calls
// the onLoad function.
// onLoad calls the setSelectionChangedObserver method
// from MGMap, providing the
Setting Up Event Handlers | 73

// Autodesk MapGuide Viewer, Java Edition
// with the observer object that handles selection
// changed events.
function onLoad()
{

if (navigator.appName() == "Netscape")
getMap().setSelectionChangedObserver(document.obsJava);

}

function onSelectionChanged(map)
{

alert("Selection Changed");
}

}

// Autodesk MapGuide Viewer, Java Edition was not
// installed so we check to see if the browser is Netscape
else if (navigator.appName() == "Netscape")
{

// The browser is Netscape, so we embed the
// Autodesk MapGuide Viewer Plug-In Observer Applet
document.write("<Java Applet CODE=\"MapGuideObserver6.class\"

WIDTH=2 HEIGHT=2 NAME=\"obs\" MAYSCRIPT>");
document.write("</Java Applet>");

function onLoad()
{

if (navigator.appName() == "Netscape")
getMap().setSelectionChangedObserver(document.obs);

}

function onSelectionChanged(map)
{

alert("Selection Changed");
}

}
</SCRIPT>

Installing Plug-In and Java Editions Observer Applets (continued)
74 | Chapter 5 Handling Events

ActiveX Control Event Handlers

You can handle events from the Autodesk MapGuide Viewer ActiveX Control
within Microsoft Internet Explorer by defining VBScript functions.

Define VBScript functions in the HTML file where the <OBJECT> tag resides.
Define a function for each of the events that you want to handle. Function
names must begin with the name of the MGMap object, followed by an under-
score (_), followed by the event name and parameter list. For example:

<SCRIPT LANGUAGE="VBScript">
Sub map_onSelectionChanged(map)

onSelectionChanged map
End Sub
</SCRIPT>

When an event occurs, Internet Explorer looks for a VBScript function with
the name of the object in which the event occurred followed by the event.
For example, in response to an onSelectionChanged event, Internet
Explorer looks for a function named mapName_onSelectionChanged. If it
finds such a function, it treats it as the event handler.

Plug-In and ActiveX Control Event Handlers

The following examples support event handling for both Netscape Navigator
and Internet Explorer.

VBScript Example

This VBScript example is designed to handle the onDigitizedPoint event
for both Netscape Navigator and Internet Explorer:

// Internet Explorer Observer
<SCRIPT LANGUAGE="VBScript">
//send onDigitizedPoint events from the
// Autodesk MapGuide Viewer ActiveX Control to the
//event-handling function
Sub map_onDigitizedPoint(Map, Point)

onDigitizedPoint Map, Point
End Sub
</SCRIPT>

// Netscape Navigator Observer Applet: MapGuideObserver6.class
// ...if Netscape, embed event observer
if (navigator.appName == "Navigator")
{

document.write("<APPLET CODE=\"MapGuideObserver6.class\"
WIDTH=2 HEIGHT=2 NAME=\"obs\" MAYSCRIPT>");
document.write("</APPLET>");

}

Setting Up Event Handlers | 75

We named the event observer obs. To call this observer for Netscape
Navigator, refer to the observer as document.obs, because in the Netscape
object model the observer is an object of the document. Be sure to copy the
Autodesk MapGuide Viewer Plug-In observer applet code
MapGuideObserver6.class to the same directory as your HTML files, or
this code won’t work. If you were to embed MapGuideObserver6.class in
a different frame or window from the function where you called it, you will
need to specify the full window.frame.document.object name. For
example: parent.mapframe.document.obs.

Now, suppose you have a button named Digitize. This button is set up so
that its onClick event (a browser event) calls a function you created,
DigitizeIt. The DigitizeIt function calls the digitizePoint method,
an Autodesk MapGuide Viewer API method that waits for the user to click a
point on the map and then captures that point. For Netscape Navigator, the
digitizePoint method requires an event observer as a parameter, whereas
Internet Explorer does not. Here is the code for both:

function digitizeIt()
{

if (navigator.appName == "Navigator")
getMap().digitizePoint(document.obs);

else
getMap().digitizePoint();

}

So if the user is viewing the map in Netscape, the observer applet
(document.obs) is passed as a parameter. The browser waits for the user to
click a point on the map, which triggers the onDigitizedPoint event.
Then, one of the two observers picks up the event and tells the browser what
function to call next, namely an event handler function you named
onDigitizedPoint. The onDigitizedPoint function then does whatever
you want with the event, such as retrieving the coordinates of the point the
user clicked.
76 | Chapter 5 Handling Events

JavaScript Example

The following JavaScript example shows an HTML page that handles the
onSelectionChanged event for both Netscape Navigator and Microsoft
Internet Explorer browsers:

<SCRIPT LANGUAGE="JavaScript">
if (navigator.appName() == "Netscape")
{
// Embed the Autodesk MapGuide Viewer Plug-In Observer Applet
document.write("<Java Applet CODE=\"MapGuideObserver6.class\"

WIDTH=2 HEIGHT=2 NAME=\"obs\" MAYSCRIPT>");
document.write("</Java Applet>");
}

function onLoad()
{
if (navigator.appName() == "Netscape")

getMap().setSelectionChangedObserver(document.obs);
}

function onSelectionChanged(map)
{
alert("Selection Changed");
}
</SCRIPT>

If this script is loaded in Netscape Navigator, it first adds an <APPLET> tag to
the document, which loads the MapGuideObserver6.class applet. The
<APPLET> tag must be added in this manner or the page will not load
correctly in Internet Explorer. The applet is given the name obs. After the
page loads, the browser automatically calls the onLoad function. onLoad
calls the setSelectionChangedObserver method from MGMap, providing
the Autodesk MapGuide Viewer Plug-In and its observer applet with the
observer object that handles selection changed events. Finally, the
map_onSelectionChanged function is implemented to handle the event in
JavaScript. This one function will now handle selection changed events from
both the Autodesk MapGuide Viewer Plug-In and Autodesk MapGuide
Viewer ActiveX Control.

To see a fully functional event handling example, choose Help ➤ Contents
➤ Examples Advanced ➤ Event Handling in the Autodesk MapGuide Viewer
API Help. This example implements an observer object that supports all of the
observer interfaces by forwarding the events back to JavaScript functions that
have identical semantics to the Autodesk MapGuide Viewer ActiveX Control
event handlers.
Setting Up Event Handlers | 77

VBScript and JavaScript Example

The following VBScript and JavaScript example shows an HTML page that
handles the onSelectionChanged event for both Netscape and Microsoft
browsers. This example forwards the event from your VBScript function to a
shared JavaScript function that processes the event. For example, the
following function handles the onSelectionChanged event for an MGMap
object called map:

// This VBScript function handles events from the
// Autodesk MapGuide Viewer ActiveX Control
// control and passes it to the JavaScript function defined
// below. Netscape browsers will ignore the VBScript methods.

<SCRIPT LANGUAGE="VBScript">
Sub map_onSelectionChanged(map)

onSelectionChanged map
End Sub
</SCRIPT>

// The following JavaScript function processes events
// for both the Autodesk MapGuide Viewer ActiveX Control and
// Autodesk MapGuide Viewer Plug-In.
// Autodesk MapGuide Viewer ActiveX Control events
// are forwarded to this function via VBScript, and
// Autodesk MapGuide Viewer Plug-In events are
// forwarded to this function via the
// Autodesk MapGuide Viewer Plug-In observer.

<SCRIPT LANGUAGE="JavaScript">
function onSelectionChanged(map)
{
alert("Selection Changed");
}
</SCRIPT>

Writing Event Handlers

To make an Autodesk MapGuide observer work properly, always give your
event handler the same name as the event it is handling. When the event is
fired, the code in the corresponding observer is executed automatically. This
section describes how to write JavaScript and Java event handlers for the
onBeginLayout and onEndLayout events.
78 | Chapter 5 Handling Events

Page Setup Event Handler Example

If you want your application to control settings from the Autodesk
MapGuide Viewer Page Setup dialog box, you can write event handling code
that responds to the onBeginLayout event. When onBeginLayout is trig-
gered, it automatically passes two objects, the MGPageSetup and
MGPrintInfo objects:

void onBeginLayout (MGPageSetup pgSetup, MGPrintInfo info)

The MGPageSetup object describes the state of the Page Setup dialog box
immediately before the user clicked OK in the Print dialog box. The
MGPrintInfo object provides information about the resolution of the
output device and the size of the printable area of the page.

The following example shows one way to write an onBeginLayout event
handler in JavaScript that suppresses all page elements except the map. The
example assumes you’ve set up the event handlers as described in “Setting
Up Event Handlers” on page 72, and enabled print events as described in
“Enabling the Print Events” on page 66.

To suppress page elements except the map

1 Create a button on the HTML page:

<form>
<input type="button" value="Just the Map"

OnClick="print_map_only();" name="myButton">
</form>

2 Create a JavaScript function that the button will call. In this example, the
function sets the state of a boolean variable called map_only. The variable
will be read by our event handler, so we’ve given it global scope by declar-
ing it outside the function body:

var map_only; // put var outside function body
function print_map_only()
{

map_only = "true";
getMap().printDlg();
map_only = "false";

}

Writing Event Handlers | 79

3 Write the event handler. It goes in the HTML page (or the JavaScript .js
file), just like any other JavaScript function. This function is executed
automatically every time the onBeginLayout event fires. Note that the
function takes an MGPageSetup object and an MGPrintInfo object as its
parameters:

function onBeginLayout (pgSetup, info)
{

if (map_only == "true")
{

pgSetup.setInclude("mg_legend", false);
pgSetup.setInclude("mg_northarrow", false);
pgSetup.setInclude("mg_scalebar", false);
pgSetup.setInclude("mg_title", false);
pgSetup.setInclude("mg_timestamp", false);
pgSetup.setInclude("mg_url", false);

}
}

The following code shows how to implement the same event handler for the
onBeginLayout event in Java:

public class MyObserver extends Applet implements
MGPrintingObserver
{

public void onBeginLayout(MGPageSetup pgSetup, MGPrintInfo info)
{

// turn off all elements except the map
pgSetup.setInclude("mg_scalebar", false);
pgSetup.setInclude("mg_northarrow", false);
pgSetup.setInclude("mg_title", false);
pgSetup.setInclude("mg_timestamp", false);
pgSetup.setInclude("mg_legend", false);

}
}

Note You can control the Page Setup without using the onBeginLayout
event, but the results are different. In the example above, the Page Setup is mod-
ified only for that printout. Because the event handler is working with a copy of
the MGPageSetup object, subsequent printouts from the popup menu don’t
show these changes, and the changes don’t appear in the Page Setup dialog box.
If you were to write a similar function that was not attached to the
onBeginLayout event, the changes would continue to be reflected in both the
printout and the Page Setup dialog box until the map is refreshed.
80 | Chapter 5 Handling Events

Print Event Handler Example

If you want your application to change the title font, you can add a custom
symbol, or control the position and size of any page element. To do this, you
need to write event handling code that responds to the onEndLayout event.
When onEndLayout is triggered, it automatically passes two objects,
MGPrintLayout and MGPrintInfo objects:

void onEndLayout (MGPrintLayout prLayout, MGPrintInfo info)

The MGPrintLayout object provides access to printed page elements. You
can then use MGPageElement and MGExtentEx to control how those
elements display. The MGPrintInfo object provides information about the
resolution of the output device and the size of the printable area of the page.

The following example shows one way to write a print event handler in Java-
Script that adds a custom symbol (myLogo)to the printout. The example
assumes you’ve set up the event handlers as described in “Setting Up Event
Handlers” on page 72, and enabled print events as described in “Enabling the
Print Events” on page 66.

To add a custom symbol to the printout

1 Create a button on the HTML page:

<form>
<input type="button" value="Add Symbol"

OnClick="add_symbol();" name="myButton">
</form>

2 Create a JavaScript function that the button will call. In this example, the
function sets the state of a boolean variable called new_symbol. The vari-
able will be read by our event handler, so we’ve given it global scope by
declaring it outside the function body:

var new_symbol; // put var outside function body
function print_map_only()
{

new_symbol = "true";
getMap().printDlg();
new_symbol = "false";

}

Writing Event Handlers | 81

3 Write the event handler. It goes in the HTML page (or the JavaScript .js
file), just like any other JavaScript function. This function is executed
automatically every time the onEndLayout event fires. Note that the
function takes an MGPrintLayout object and an MGPrintInfo object as
its parameters:

function onEndLayout (layout, info)
{

if (new_symbol == "true")
{

int pixelsPerInch = info.getPageResolution();
// retrieve the page elements from the MGPrintInfo class
MGPageElement mapEle = layout.getPageElement("mg_map");
MGPageElement logoEle = layout.addSymbol("mylogo");
// get the extents of the page elements
MGExtentEx mapExt = mapEle.getExtent()
MGExtentEx logoExt = logoEle.getExtent();
// set the width and height of the logo to 1" by 1"
logoExt.set(mapExt.getMinX(), mapExt.getMinY(),

mapExt.getMinX() + pixelsPerInch,
mapExt.getMinY() + pixelsPerInch);

logoEle.setExtent(logoExt);
}

}

The following code shows how to implement the same event handler for the
onEndLayout event in Java:

public class MyObserver extends Applet implements
MGPrintingObserver
{

public void onEndLayout(MGPrintLayout layout, MGPrintInfo info)
{

int pixelsPerInch = info.getPageResolution();

// retrieve the page elements from the MGPrintInfo class
MGPageElement mapEle = layout.getPageElement("mg_map");
MGPageElement logoEle = layout.addSymbol("mylogo");

// get the extents of the page elements
MGExtentEx mapExt = mapEle.getExtent()
MGExtentEx logoExt = logoEle.getExtent();

// set the width and height of the logo to 1" by 1"
logoExt.set(mapExt.getMinX(), mapExt.getMinY(),

mapExt.getMinX() + pixelsPerInch,
mapExt.getMinY() + pixelsPerInch);

logoEle.setExtent(logoExt);
}

}

82 | Chapter 5 Handling Events

Plug-In Event Handler Example

To handle events in an applet for the Autodesk MapGuide Viewer Plug-In,
you need to implement the corresponding Autodesk MapGuide Viewer event
handler interfaces in your applet.

To implement event handler interfaces

1 Implement the interface of the event that you want to handle in your
applet.

For instance, if you want to handle the onDigitizedCircle event, you
need to implement the MGDigitizeCircleObserver interface in your
applet. The MGDigitizeCircleObserver observer contains one
method, onDigitizedCircle. To implement
MGDigitizeCircleObserver, your applet must implement this
method. For example:

public class myApplet extends applet implements
MGDigitizeCircleObserver
{

public void onDigitizedCircle(MGMap map, String units,
MGPoint center, double radius)

{
// Place your event-handling code here

}
...

}

Now your applet can act as an event observer for the
onDigitizedCircle event.

2 Every time you call the method that triggers the event, pass in the name
of your applet as the second parameter.

For example, whenever you call digitizeCircle method in your applet,
you must pass in your applet name (in this case, the keyword this since
the applet is referring to itself) as the second parameter. For example:

Public void testDigitizedCircle()
{

myUSMap.digitizeCircle("", this);
}

When Autodesk MapGuide Viewer Plug-In triggers the
onDigitizedCircle event, the applet will execute the code you imple-
mented for onDigitizedCircle in your applet.
Writing Event Handlers | 83

84

�

�

�

�

6
Using Reports to Query and
Update Data Sources
Overview

Introducing ColdFusion and
ASP

Creating report scripts with
ColdFusion

Creating report scripts with
ASP
Your Autodesk MapGuide® applications can include

reports that enable users to display and modify database

information associated with a map. This chapter explains

how Autodesk MapGuide generates reports and shows

you how to create report scripts using two popular server-

side technologies, Macromedia ®ColdFusion® and

Microsoft® Active Server Pages.
85

Overview

When creating a map, you can add reports to the map. Typically, a report is
an HTML page that displays information about the selected map features on
the layer. However, because the power behind the report is a report script
that you create using a third-party tool like ColdFusion, Active Server Pages
(ASP), Java, LiveWire™, or dbWeb™, the report can do much more than
display information—it can perform any number of tasks that you can code
into the script. For example, in this chapter you will see a sample application
that allows the user to click a point on the map and then updates the source
database with that point, so that any map layer that uses that database as its
data source will now display that point on the map. This chapter focuses on
these types of advanced applications performed by the report script.

How Reports Are Generated

The role of Autodesk MapGuide in generating reports is to construct a URL
dynamically and send it as an HTTP request to a Web server. This URL is
composed of a path to an application on the Web server along with a set of
parameters. The server, in turn, will process the request and send (or post)
the results.

Autodesk MapGuide can generate two distinct types of requests by passing
unique parameters, along with the URL, to the server. The first type of URL
request passes key values of the selected map features. These key values are
the keys that are defined in the data source. The second type of URL request
passes a point feature and its location.

Specifying the Report Script

The report script contains the necessary code to connect to the appropriate
database, build the query, and display the results. For example, the script
might be a ColdFusion template file (CFM) or Active Server Page (ASP) that
resides on the Web server. The Reports tab in the Map Window Properties
dialog box in Autodesk MapGuide Author allows you to specify the report
script, as well as set other properties of the report. In the URL text box, you
specify the name and path of the script you want to use to pass the report
information to your reporting engine.
86 | Chapter 6 Using Reports to Query and Update Data Sources

The Request

Autodesk MapGuide® Author will use the report settings defined in the Map
Window Properties dialog box to construct the URL that is sent to the server.
For example, after all of the settings are specified, the URL code might look
like this:

http://www.myserver.com/reports/
report.cfm&OBJ_TYPE=landuse&OBJ_KEYS='01235639','01235640','01235641'

This URL code is a request to launch a ColdFusion template called report.cfm.
The template file and the two parameters OBJ_TYPE and OBJ_KEYS are
passed to the ColdFusion engine by the Web server. The parameters will serve
as arguments or variables that can be used by the ColdFusion template file.

Note By default, Autodesk MapGuide Author sends map feature key values to
the URL as characters. However, if you specify another data type for the key col-
umn, Autodesk MapGuide will send the keys as that type instead. You set the key
column type by selecting it from the Type list box on the Data Sources tab of the
Map Layer Properties dialog box in Autodesk MapGuide Author.

Launching the Report

You can launch the View Reports dialog box from Autodesk MapGuide
Viewer by right-clicking the map and choosing View ➤ Reports, or by
clicking the Report button on the Autodesk MapGuide® Viewer toolbar. Both
methods will display a dialog box that shows a list of available reports
defined for the map. Using the Autodesk MapGuide Viewer API, you can also
launch reports programmatically; you call the View Reports dialog box using
viewReportsDlg and launch the report directly using viewReport.

Note Autodesk MapGuide Viewer ActiveX Control cannot open reports whose
names contain double quotation marks, such as “Server Report”. Therefore, if
you are developing for Autodesk MapGuide Viewer ActiveX Control, do not use
double quotation marks in your report names. Autodesk MapGuide Viewer
ActiveX Control can open reports whose names contain single quotation marks,
such as ‘Server Report’.
Overview | 87

Introducing ColdFusion and ASP

The examples in this chapter were created using two report engines,
Macromedia ColdFusion and Microsoft Active Server Pages (ASP). ColdFu-
sion and ASP are application servers. An application server is an application
that works with the Web server to provide additional Web functionality. Like
the Web server, it runs in the background as a Windows® NT service.

Both products work essentially the same way. You build Web pages that
include special tags, and when a Web browser requests one of those pages,
the application server interprets the tags, replaces them with the results of
the specified calculations or database queries, and then sends the completed
page to the Web server. The Web server then sends the page to the browser
to be displayed. Because the processing is done by the server, the end-user
sees only the final HTML output, not the code used to create that output. (Of
course, the HTML can include anything—even client-side scripting code!)
Although end-users can view the source of your HTML output, they never see
the server-side scripting code used to create that output.

This developer’s guide uses ColdFusion and ASP for its examples because
developing with these products is easier than writing your own Perl scripts or
Visual Basic/C++ DLLs, and because these products are by far the most
common platforms for Autodesk MapGuide server-side application develop-
ment. ColdFusion is available from Macromedia, and ASP is included as part
of Windows 2000 and Windows NT Server 4.0 with the Windows NT 4.0
Option Pack. Although the examples are specific to ColdFusion and ASP, the
concepts are general, applying to Common Gateway Interface (CGI) and to
other application servers as well.

ColdFusion supports both Microsoft® Internet Information Server® (IIS) and
the Netscape® Web servers. ASP supports IIS only, meaning that it, and your
map applications, can only be run on the Microsoft Web server. Keep in
mind, though, that this does not affect your users; the HTML pages you
produce can be read by any Web browser. The limitation exists only for the
Web server.
88 | Chapter 6 Using Reports to Query and Update Data Sources

Creating Report Scripts with ColdFusion

A ColdFusion script, or template, is essentially a standard HTML file that
includes extra tags written in a server-side markup language called CFML
(ColdFusion Markup Language). CFML tags begin with the letters CF, and are
used to tell ColdFusion to process either a calculation or a query. The tags can
also tell ColdFusion which data source you want to use and how you want to
manipulate or display the information in that data source. A template uses
the file extension .cfm to identify itself and let the Web server know that it
should be passed to the ColdFusion service for processing.

ColdFusion was designed to provide database connectivity to your Web
pages. It is a full-fledged development environment that includes functions,
operators, variables, control structures, and more. You can use ColdFusion to
create powerful and complex Web applications. But simple applications have
their uses too, as we’ll see later in this chapter. Despite its power, ColdFusion
is fairly easy to learn; if you’re familiar with HTML coding, you’ll get up to
speed quickly.

The following examples show how to create report scripts with ColdFusion.
We recommend that you read them in order.

Note For ASP versions of the same examples, see “Creating Report Scripts with
ASP” on page 109.

Listing File Contents with ColdFusion

This example shows a simple template that lists the contents of a map
resource database. Note that this template accesses the database directly,
instead of using the Autodesk MapGuide reporting feature. Later, we’ll see
how Autodesk MapGuide fits into the picture.

Let’s say you have an MWF file that points to a database containing parcel
information, such as the lot number, street address, owner’s name, and so
on. If you want to list the contents of that database at the bottom of an
HTML page displaying the map, you would first rename the HTML file with
a .cfm extension and place it in a directory with script or execute permissions.
Then you would add <CFQUERY> and <CFOUTPUT> statements to the file. The
<CFQUERY> tag tells ColdFusion which database to use and which records to
select from that database. You can place <CFQUERY> anywhere in the page,
as long as it appears before <CFOUTPUT>. The <CFOUTPUT> tag controls how
the database output will be displayed on the page. You place this tag within
<BODY>, at the location you want the database output to appear.

The next sections describe each of these tasks in more detail.
Creating Report Scripts with ColdFusion | 89

Setting Up the Query

First we’ll build the <CFQUERY> statement. If your map links to a table called
Parcel_Data through a data source Assessor, <CFQUERY> will look like
this:

<CFQUERY NAME="get_parcel_info" DATASOURCE="Assessor">
SELECT * FROM Parcel_Data
</CFQUERY>

The NAME attribute specifies the name of the ColdFusion query. This name
can be anything you want, as long as it matches the name specified later in
<CFOUTPUT>. The DATASOURCE attribute is the OLE DB data source name
(DSN), in this case Assessor. Between the <CFQUERY> beginning and end
tags is a SQL statement specifying which part of the table you want to look
at (this selection is known as a recordset.) In this case, we’re selecting every-
thing (*) from the Parcel_Data table.

Controlling the Output

Now we’ll assemble the <CFOUTPUT> statement. If you want to display the
parcel number, owner’s name, and year built, your tag will look like this:

<CFOUTPUT QUERY="get_parcel_info">
<P>Parcel Number: #APN#

<P>Owner Name: #Owner_Name#

<P>Year Built: #Year_Built#</P>
</CFOUTPUT>

The QUERY attribute tells ColdFusion which recordset you’d like to display;
this attribute matches the NAME you specified in <CFQUERY>. The names
within pound signs (#APN#, #Owner_Name#, #Year_Built#) are
ColdFusion variables that match column names in the database table (for
example, #APN# refers to the APN column). Everything else is straight HTML.

Seeing the Results

Now we’re ready to load the page in the browser.

However, because this particular table has more than 5,000 records, selecting
everything in it might not be such a good idea. Let’s limit the output by
showing only houses built in 1963. To do so, go back to <CFQUERY> and
change the SQL statement to the following:

SELECT * FROM Parcel_Data Where Year_Built = '1963'
90 | Chapter 6 Using Reports to Query and Update Data Sources

Here’s a listing of the complete CFM file called parcel_report.cfm:

<HTML>
<HEAD>
<!-- ColdFusion query -->
<CFQUERY NAME="get_parcel_info" DATASOURCE="Assessor">
SELECT * FROM Parcel_Data Where Year_Built = '1963'
</CFQUERY>
<TITLE>ColdFusion Example</TITLE>
</HEAD>
<BODY>
<H1>Listing File Contents with ColdFusion</H1>
<!-- ColdFusion output tags -->
<CFOUTPUT QUERY="get_parcel_info">
<P>Parcel Number: #APN#

Owner: #Owner_Name#

Year Built: #Year_Built#</P>
</CFOUTPUT>
</BODY>
</HTML>

The following shows the page as it appears in a browser.

The HTML output

In this example, the database happens to be an Autodesk MapGuide resource,
but it could be anything: a Microsoft® Access database listing employees and
their phone numbers, a Microsoft® Excel spreadsheet showing your checking
account balance, or anything else you might store in a table.
Creating Report Scripts with ColdFusion | 91

In most cases, you’ll want to access your database resources through
Autodesk MapGuide Viewer, by linking them to features and layers in the
map. The next two examples show you how to do this.

Querying and Displaying Data via the Map with
ColdFusion

Now that we’ve seen how ColdFusion works, let’s use it with Autodesk
MapGuide. This example uses the StarterApp.mwf file from the Autodesk
MapGuide Web site. Note that the full set of Starter Application files is avail-
able for download at http://www.autodesk.com/mapguidedemo.

Setting Up the Report in Autodesk MapGuide Author

We’ll start by specifying report information in Autodesk MapGuide Author.

Our report will be called Parcel Data (CF), and it will access a CFM file whose
URL is http://www.yourserver.com/parcel_report.cfm. We want the CFM file
to display information about user-selected features on a layer called
Assessment. The Map Window Properties dialog box shows our selection.

Dialog box specifications for Parcel Data (CF)
92 | Chapter 6 Using Reports to Query and Update Data Sources

Here are descriptions of how we used the options on the Reports tab:

� Report—Specifies the report name as it appears in Autodesk MapGuide
Viewer. Our report is Parcel Data (CF).

� URL—Specifies the name and location of the report script, in this case
parcel_report.cfm on www.yourserver.com.

� Data—We left this field blank but could have used it to pass additional
URL parameters to parcel_report.cfm. For example, if our ColdFusion file
contained definitions for more than one query, we could have passed a
parameter telling the file which of the queries to run, such as
report = 'A'.

� Type—Specifies whether the report is based on the keys of selected fea-
tures (as this one is), or on the coordinates of a point the user clicks.

� For Map Layers—Specifies the layer or layers you want the report to be
linked to. Our report operates only on features on the Assessment layer.

� Parameter—Specifies the name of the URL parameter used to send the
feature key (or keys) to parcel_report.cfm. The name can be anything you
want, as long as it matches the name you specified in parcel_report.cfm.
We’ve selected the Autodesk MapGuide Author default, OBJ_KEYS.

When a user selects one or more features from the Assessment layer and
runs the Parcel Data (CF) report, Autodesk MapGuide constructs a URL that
invokes parcel_report.cfm and tells it to generate a report on the selected
features, which are identified by their OBJ_KEY values. If the user selected a
single feature whose key was 941-0176-003-00, the URL would look like
this:

http://www.yourserver.com/parcel_report.cfm?OBJ_KEYS='941-0176-
003-00'

If the user selected multiple features, the URL could look like this:

http://www.yourserver.com/
parcel_report.cfm?OBJ_KEYS='941-0176-003-00','941-0176-006-00','941-0176-004-00'

Note that OBJ_KEYS is represented as a standard URL parameter. To
ColdFusion, this parameter is no different from one submitted by an HTML
form element. As we’ll see in the next section, ColdFusion processes it
accordingly.
Creating Report Scripts with ColdFusion | 93

Creating the Report Script

Now let’s create the ColdFusion template that will process the Autodesk
MapGuide report. The following code listing is for the parcel_report.cfm file:

<HTML>
<HEAD><TITLE>ColdFusion Report Data</TITLE></HEAD>
<BODY>
ColdFusion-- ColdFusion query -->
<CFQUERY DATASOURCE="assessor" NAME="get_parcel_info">
SELECT * FROM Parcel_Data Where APN IN
(#PreserveSingleQuotes(OBJ_KEYS)#)
</CFQUERY>
<H1>ColdFusion Report Data</H1>
<!-- ColdFusion the output tags -->
<CFOUTPUT QUERY="get_parcel_info">
<P>Parcel Number: #apn#

Owner: #owner#

Year Built: #yearblt#</P>
</CFOUTPUT>
</BODY>
</HTML>

Note that CFML tags are almost identical to those in the first example
(“Listing File Contents with ColdFusion,” on page 89). The only change is to
the <CFQUERY> tag, which uses a different SQL statement:

SELECT * FROM Parcel_Data Where APN IN
(#PreserveSingleQuotes(OBJ_KEYS)#)

As with the previous example, the statement is selecting records from the
Parcel_Data DSN. The difference is that the SQL statement now points to
a ColdFusion variable, #PreserveSingleQuotes(OBJ_KEYS)#. The
OBJ_KEYS values refer to the parameter of the same name we specified in
Autodesk MapGuide Author. As its name suggests, the
PreserveSingleQuotes function tells ColdFusion to keep the single-
quotes surrounding each feature key, instead of removing them automati-
cally as it normally would.

The SQL statement is basically saying in Parcel_Data to select all records
whose APN field matches OBJ_KEYS. In other words, select the records that
correspond to the selected features on the map. If OBJ_KEYS contains
multiple keys, ColdFusion outputs the feature data associated with each key.
94 | Chapter 6 Using Reports to Query and Update Data Sources

Creating an HTML Page to Display the Map

The last step is to create an HTML page to display our map. The following is
for the parcel_map.htm file:

<HTML>
<HEAD><TITLE>ColdFusion Example</TITLE></HEAD>
<BODY>
<H1>Querying and Displaying Data via the Map</H1>
<P>This example uses ColdFusion to access an Autodesk
MapGuide Report</P>
<!-- embedded map -->
<OBJECT ID="map" WIDTH=600 HEIGHT=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL"
VALUE="http://www.yourserver.com/maps/StarterApp.mwf>
<EMBED SRC="http://www.yourserver.com/maps/StarterApp.mwf
NAME="map" WIDTH=600 HEIGHT=250>
</OBJECT>
</BODY>
</HTML>

Seeing the Results

Users can now generate a report for one or more map features by selecting
the map features, right-clicking and choosing View ➤ Reports from the
popup menu, and then selecting Parcel Data (CF).

The following illustration shows parcel_map.htm in the Web browser.
Creating Report Scripts with ColdFusion | 95

Displaying the parcel data report in a new window

Redirecting Report Output

To avoid cluttering the desktop, let’s generate the report in the current
browser window, instead of displaying it in a new instance of the browser.
Go back to the parcel_map.htm file and modify the embedded map code:

<OBJECT ID="map" width=600 height=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL"
VALUE="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=_self>
<EMBED src="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=_self
NAME="map"WIDTH=600 HEIGHT=250>
</OBJECT>

Notice that we’ve added a Autodesk MapGuide Viewer URL parameter to the
map reference:

http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=_self
96 | Chapter 6 Using Reports to Query and Update Data Sources

ReportTarget specifies the window or frame in which you’d like your
report to display. By specifying _self, we redirect the report output so that
it displays in the current window.

Displaying the parcel data report in the current window

At first glance this appears to be a good solution, but it has some problems.
Users might get confused about where they are. Worse yet, when they click
the Back button, they will find that the map has been reloaded and the loca-
tion they zoomed to has been lost. A better approach is to display the map
and the report in two frames of the same window.
Creating Report Scripts with ColdFusion | 97

Start by creating a standard HTML file that defines a frameset. The frameset
should display the map on the left and a blank page on the right:

<HTML>
<HEAD>
<TITLE>ColdFusion Report Data</TITLE>
</HEAD>
<!-- frames -->
<FRAMESET COLS="65%,*">
<FRAME NAME="Left" SRC="parcel_map.htm" MARGINWIDTH="10"
MARGINHEIGHT="10" SCROLLING="auto" FRAMEBORDER="yes">
<FRAME NAME="Right" SRC="about:blank" MARGINWIDTH="10"
MARGINHEIGHT="10" SCROLLING="auto" FRAMEBORDER="yes">
</FRAMESET>
</HTML>

Notice that we have assigned the names Left and Right to the frames. The
source for Left is parcel_map.htm, the file containing our embedded map.
The source for Right is about:blank, a standard browser function whose
purpose is to display a blank window or frame.

Now that we have the frameset, let us go back to the parcel_map.htm file and
change the ReportTarget parameter to Right, the name we assigned to our
right-hand frame:

<OBJECT ID="map" WIDTH=600 HEIGHT=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL"
VALUE="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=Right>

<EMBED
SRC="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=Right
NAME="map" WIDTH=600 HEIGHT=250>

</OBJECT>
98 | Chapter 6 Using Reports to Query and Update Data Sources

The following illustration shows the map and the report in two frames of the
same window.

Displaying the map and report in frames

Users can now invoke as many reports as they want, without losing their
place in the map or calling a new instance of the browser.
Creating Report Scripts with ColdFusion | 99

Adding a Button with the Viewer API

An Autodesk MapGuide report is generated by right-clicking the map and
then choosing View ➤ Reports from the popup menu. This interface is not
immediately apparent to users, so we’ll make it easier by creating a Parcel
Report button that will display the report.

First we’ll add the following <SCRIPT> tag to the parcel_map.htm file:

<SCRIPT>
function getMap()
{

if (navigator.appName == "Netscape")
return parent.Left.document.map;

else
return parent.Left.window.map;

}

function runReport()
{

parent.Right.document.write("<P>Select one or more parcels first.</P>");
getMap().viewReport('Parcel Data (CF)');

}
</SCRIPT>

The <SCRIPT> tag holds two JavaScript functions. The first function is
getMap. The second, runReport, displays our Autodesk MapGuide report.

The runReport function consists of two statements. The first statement
writes a line of text to the right-hand frame of our report application. You
will notice that the text instructs users to select one or more map features.
This instruction displays each time runReport is invoked, regardless of
whether the user has selected features. If features are selected, the instruc-
tions are replaced in the frame by the contents of the newly generated report;
otherwise the instructions remain in the frame to provide feedback.

Note parent refers to the top-level frame and Right is the name we specified
for our right-hand frame in parcel_frames.htm. Refer to third-party JavaScript doc-
umentation for more information on writing to frames and windows.

The second statement uses the viewReport method to run our report. The
statement begins by calling getMap, which returns the map object in the
Web page. The map object is then passed to viewReport, which directs
Autodesk MapGuide to display Parcel Data (CF).

Now that our function is defined, we need a way to call it, adding a <FORM>
element to parcel_map.htm:

<FORM>
<INPUT TYPE="button" VALUE="Parcel Report" ONCLICK="runReport()"</INPUT>
</FORM>
100 | Chapter 6 Using Reports to Query and Update Data Sources

This is a standard HTML form consisting of a single button named Parcel
Report. By setting the value of ONCLICK to runReport, we specify that the
function should be invoked each time a user clicks the button.

Note A JavaScript function must appear above the JavaScript code that calls it.
This keeps users from trying to call a function before it has been parsed by the
browser. JavaScript functions are typically defined in a single <SCRIPT> tag in the
<HEAD> section of the HTML file.

The following code is the finished application:

<HTML>
<HEAD>
<TITLE>ColdFusion Example</TITLE>
<!-- JavaScript functions -->
<SCRIPT>
// function #1
function getMap()
{

if (navigator.appName == "Netscape")
return parent.Left.document.map;

else
return parent.Left.window.map;

}
// function #2
function runReport()
{

parent.Right.document.write("<P>Select one or more parcels first.</P>");
getMap().viewReport('Parcel Data (CF)');

}
</SCRIPT>
</HEAD>

<BODY>
<H1>Querying and Displaying Data via the Map</H1>
<P>This example uses ColdFusion to access an Autodesk
MapGuide Report</P>
<!-- embedded map -->
<OBJECT ID="map" WIDTH=600 HEIGHT=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL"
VALUE="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=
Right>
<EMBED
SRC="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=Ri
ght NAME="map" WIDTH=600 HEIGHT=250>
</OBJECT>
<!-- Parcel Report button -->
<FORM>
<INPUT TYPE="button" VALUE="Parcel Report" ONCLICK="runReport()"</INPUT>
</FORM>
</BODY>
</HTML>
Creating Report Scripts with ColdFusion | 101

The following shows the application results if no map features have been selected.

Displaying the map, a report frame, and a Parcel Report button

Modifying a Database via the Map with
ColdFusion

This example shows how to create an application that lets users add points
to a map from their browsers. The added points are then stored in a database
on the server and are visible to anyone else viewing the map. The example
shows a hypothetical Incident Log application that will be used to track
crimes and consists of the following components:

� Three ColdFusion files, getpoint.cfm, showform.cfm, and insert.cfm. As their
names suggest, the files receive point coordinates from Autodesk
MapGuide, display a form that takes additional user input, and add the
point data to a database on the server.

� An Autodesk MapGuide report (and later, a custom menu item) that
passes digitized point coordinates to the getpoint.cfm file.
102 | Chapter 6 Using Reports to Query and Update Data Sources

� An HTML page to host the map (except for minor text changes, this page
will be identical to parcel_map.htm from the previous example).

� An Incidents database table on the server and a new map layer (also called
Incidents) to display the contents of that table.

Setting Up the Report in Autodesk MapGuide Author

We’ll start by specifying the report information in Autodesk MapGuide®

Author. Our report will be called Incidents (CF), and it will pass the lat/lon
coordinates of a user-specified point to a CFM file whose URL is
http://www.yourserver.com/cf/getpoint.cfm.

Dialog box specifications for Incidents (CF) report

Here are descriptions of how we used the options on the Reports tab:

� Report—Specifies the name of the report as it appears in the Autodesk
MapGuide Viewer. Our report is named Incidents (CF).

� URL—Specifies the name and location of the report script, in this case get-
point.cfm on www.yourserver.com.

� Data—We left this field blank but could have used it to pass additional
URL parameters to getpoint.cfm.

� Type—Specifies whether the report is based on the keys of selected fea-
tures, or on the coordinates of a point the user clicks. We chose the second
option: Digitize a point and send point.

� Prompt—Specifies the text to be displayed in a message box that prompts
users to specify a point. If this field is left blank, no message box is
displayed.
Creating Report Scripts with ColdFusion | 103

When a user runs the Incidents (CF) report, Autodesk MapGuide prompts the
user to specify a point. Then it invokes getpoint.cfm, passing the point’s
lat/lon coordinates as URL parameters. For example, if the user specified a
point with coordinate values of 37.721,-121.943, the URL would be:

http://www.yourserver.com/getpoint.cfm?LAT=37.721&LON=-121.943

Creating the Report Scripts

Next we’ll create the three CFM files: getpoint.cfm, showform.cfm, and
insert.cfm.

The first CFM file, getpoint.cfm, creates a small browser window and then calls
a second file, showform.cfm, passing along the coordinate values it received
from Autodesk MapGuide:

<SCRIPT LANGUAGE = "JavaScript">
window.close();
var loc = "showform.cfm?LAT=" + <CFOUTPUT>#LAT#</CFOUTPUT> +
"&LON=" + <CFOUTPUT>#LON#</CFOUTPUT>;
win = window.open(loc,"ShowFormWin",
"width=300,height=170,dependent=yes,resizable=yes");
win.focus();
</SCRIPT>

Note that getpoint.cfm consists of a single <SCRIPT> element containing a
block of JavaScript code; because the file doesn’t display any text, no other
HTML tags are needed. Let’s look at the code line by line.

When getpoint.cfm is first called, it uses a default browser window similar to
the one we saw in the previous example. The first line of code closes that
window.

Note Because the browser parses the entire <SCRIPT> block before running
the first line of code, we can safely close the window, knowing our script will con-
tinue to run. Be aware, however, that this strategy will get you into trouble if your
file contains function calls or other multiple <SCRIPT> blocks. See your
JavaScript documentation for more information.

The next line constructs a URL and assigns it to a variable called loc. Note
that the line is a mix of both JavaScript code and ColdFusion <CFOUTPUT>
tags. The <CFOUTPUT> tags contain two ColdFusion variables named #LAT#
and #LON#. These variables are replaced on the server by the lat/lon values
that Autodesk MapGuide provided, meaning the browser receives a line
similar to the following:

var loc = "showform.cfm?LAT=" + "37.721" + "&LON=" + "-121.943";

The effect of this line is to create a variable called loc and to assign it the
value showform.cfm?LAT=37.721&LON=-121.943.
104 | Chapter 6 Using Reports to Query and Update Data Sources

The next line creates a new browser window, using the loc variable to supply
the URL. The last line shifts browser focus to the new window we just created.

Now, let’s look at the second CFM file, the showform.cfm file:

<HTML>
<HEAD>
<TITLE>Attribute Input</TITLE>
</HEAD>
<BODY BGCOLOR="SILVER">
<CFOUTPUT>
<FORM Name=myForm METHOD="POST" ACTION="insert.cfm">
<INPUT TYPE="hidden" NAME="rpt_lat" VALUE="#LAT#">
<INPUT TYPE="hidden" NAME="rpt_lon" VALUE="#LON#">
Incident Report:

<INPUT TYPE="text" MAXLENGTH="30" NAME="rpt_info" SIZE="33">

Reported By:

<INPUT TYPE="text" MAXLENGTH="30" NAME="rpt_by" SIZE="33">

<CENTER>
<INPUT TYPE="submit" NAME="Submit" VALUE="OK">
<INPUT TYPE="button" NAME="CancelButton" VALUE="Cancel"
onClick="window.close()">
</CENTER>
</FORM>
</CFOUTPUT>
</BODY>
</HTML>

The showform.cfm file does indeed show a form, which is used to enter a
description of the incident.

The bulk of the file is a standard HTML form. The form has been placed
within <CFOUTPUT> tags to give us access to the ColdFusion variables #LAT#
and #LON#. Once again, these variables are replaced on the server by the user-
specified lat/lon coordinates.

In short, an HTML form collects data from the user and sends that data to a
program in the form of a URL. The form in showform.cfm calls yet another
CFM file, insert.cfm, passing it the following parameters:

� The latitude value represented by the ColdFusion variable #LAT#; this
value is passed as the form parameter rpt_lat.

� The longitude value represented by the ColdFusion variable #LON#; this
value is passed as the form parameter rpt_lon.

� An incident description entered in the form by a user; this description is
passed as the form parameter rpt_info.

� A name entered in the form by a user; this name is passed as the form
parameter rpt_by.
Creating Report Scripts with ColdFusion | 105

The following illustration shows the showform.cfm form, as displayed in the
window created by getpoint.cfm.

Data entered in the showform.cfm form

Specifying the lat/lon point 37.721,-121.943 by clicking the map and filling
out the form as shown in the illustration will result in the following URL
being constructed and passed to the insert.cfm file:

insert.cfm?rpt_lat=37.721&rpt_lon=-
121.943&rpt_info=A+hat+was+stolen&rpt_by=J+Bigby

Now, let’s see how the insert.cfm file handles the URL:

<CFQUERY NAME="InsertQuery" DATASOURCE="assessor">
INSERT into Incidents (lat, lon, description, reported_by)
values('#FORM.rpt_lat#','#FORM.rpt_lon#','#FORM.rpt_info#','#FORM.
rpt_by#')
</CFQUERY>
<SCRIPT LANGUAGE = "JavaScript">
alert("Point added successfully! Reload the map to see your changes.");
window.close();
</SCRIPT>

The file consists of <CFQUERY> and <SCRIPT> tags. Like getpoint.cfm, the file
contains no displayable text. The <CFQUERY> tag defines a query named
InsertQuery using the Assessor DSN from the previous examples. Note
that the query name is defined, but not used again in the file.
106 | Chapter 6 Using Reports to Query and Update Data Sources

The <CFQUERY> element contains a single SQL Insert statement, which is
used to add the form data to the map resource database.

The SQL Insert statement adds data to a database resource, in this case the Inci-
dents table in the assessor DSN. The parenthetical values lat, lon,
description, and reported_by are the names of the database fields we want
to supply values for. The parenthetical values #FORM.rpt_lat#,
#FORM.rpt_lon#, #FORM.rpt_info#, and #FORM.rpt_by# represent the
information we want to place into the URL parameters passed by showform.cfm.

The first line of the <SCRIPT> element displays an alert telling users to reload
the map to see their changes. The second line closes the form window,
leaving only the original map window.

Creating an HTML Page to Display the Map

To create an HTML page to display our map, we’ll use parcel_map.htm, modi-
fying only the <H1> and the short paragraph of descriptive text:

<HTML>
<HEAD>
<TITLE>ColdFusion Example</TITLE>
</HEAD>
<BODY>
<!-- Only the next two lines are different -->
<H1>Modifying a Database via the Map</H1>
<P>This example uses ColdFusion to update a database map
resource</P>
<!-- embedded map -->
<OBJECT ID="map" WIDTH=600 HEIGHT=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL"
VALUE="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=
Right>
<EMBED
SRC="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=Ri
ght NAME="map" WIDTH=600 HEIGHT=250>
</OBJECT>
</BODY>
</HTML>

Creating a Custom Menu Item

There a few problems with this design. One is that it requires users to select
View ➤ Reports from the popup menu, then select Incidents (CF) from the
list, then clear the JavaScript alert box that tells them to select a point, and
then digitize the point. Another problem is that because our report isn’t asso-
ciated with a layer, users can add items to the Incidents map layer even when
that layer isn’t visible.
Creating Report Scripts with ColdFusion | 107

We can solve both of these problems by creating a custom menu item that
takes the place of the report. We do so by selecting the options, as shown in
the following illustration, on the Popup Menu tab of the Map Window Prop-
erties dialog box.

Dialog box specifications for Incident Log popup menu item

Here are descriptions of how we used the options on the Popup Menu tab:

� New Menu Item—Creates a new popup menu item below the item
selected in the Popup Menu list.

� Name—Specifies the name of the menu item as it will appear in the
Autodesk MapGuide Viewer. Our menu item is named Incident Log.

� Action—Specifies the task to be performed by the menu item. We selected
GetPointAndSendToURL from the drop-down list.

� Arguments—Specifies arguments to use with the selected action, in this
case the path to getpoint.cfm and the name of the layer to add data to.

When users select Incident Log from the popup menu, they will immediately
be able to enter a point, thus bypassing several mouse clicks. Also, if the Inci-
dents layer is not visible because the map is zoomed outside of the layer’s
display range, the Incidents Log menu item will be unavailable.

Accessing Your Application with the Viewer API

Because the Incident Log application runs in a separate instance of the
browser, it does not have programmatic access to the map window. This
means the application cannot refresh the map automatically. (That’s why we
have a JavaScript alert box telling the user to reload the map manually.)
108 | Chapter 6 Using Reports to Query and Update Data Sources

To solve this problem and to avoid the need for the user to reload the map
manually, you can use the Autodesk MapGuide Viewer API to access the Inci-
dent Log application. Instead of creating a report or custom menu item, add
a button or other interface element to the HTML page hosting the map (or to
a frame or child window with access to that page). The button should invoke
a JavaScript function that does the following:

� Uses the digitizePoint method to get the coordinates of a user-
specified point

� Invokes getpoint.cfm, passing the point coordinates as URL parameters

� Refreshes the map after getpoint.cfm, showform.cfm, and insert.cfm have
completed their work

Creating Report Scripts with ASP

ASP files are similar to ColdFusion templates: both are based on HTML, and
both use a special extension to identify the file as one that requires special
processing (extension .asp). Instead of tags, ASP files include scripts written
in VBScript, a lightweight Visual Basic-like scripting language, or in JScript,
the Microsoft version of JavaScript.

While ColdFusion is designed specifically for Web-database connectivity,
ASP is a more general development environment. On one hand, this means
you can do more with ASP than with ColdFusion. On the other hand, it takes
longer to learn to do anything at all with ASP. Both products are excellent,
but if you’re a non-programmer, you’ll probably be happier with ColdFusion.

Much ASP functionality is provided by objects and components. Objects and
components are ActiveX Control DLLs, similar to those you would use with
Microsoft Visual Basic. Objects are always available to VBScript; you do not
have to explicitly create them to use them in your code. Components exist
outside of ASP and must be created with ASP in order to be used. ASP also
provides access to several server events; the global.asp file lets you add code
for how those events should be handled.

Mostly, you will be working with the Server object, the Request object, and
the Database Access component. To get a good idea of how ASP works, skim
the descriptions below, and then look at the examples that follow.

Tip For more information on ASP, refer to the Microsoft Internet Information
Server online documentation and the Microsoft Web site (www.microsoft.com).
ASP documentation is also available as part of the Microsoft Developer Network
(MSDN) Library.
Creating Report Scripts with ASP | 109

Summary of ASP Objects, Components, and
Events

The following tables summarize and describe objects, components, and
events you use to create a report script with ASP.

Note You can also create your own custom ActiveX Control components for
ASP.

Objects Used to Create a Report Script

Object Description

Application Lets you create variables available to all users of an
application.

Session Lets you create variables that are available to one user at
a time; session variables stay in memory as long as a
user continues the session.

Request Parses data submitted from the client to the server.

Response Manages content returned to a browser by ASP.

Server Provides a number of useful server methods, including
CreateObject(), which you’ll use to create a connection
to your database map resources.

Components Used to Create a Report Script

Component Description

Database Access Reads and writes to OLE DB data sources.

File Access Allows access to text files on your Web site.

Browser Capabilities Identifies the browser currently accessing the site and pro-
vides programmatic access to features the browser supports.

Ad Rotator Controls the rotation of banner ads in a site.

Content Linking Links separate Web pages together so that users can scroll
through them as a single page.
110 | Chapter 6 Using Reports to Query and Update Data Sources

The following examples show how to create report scripts with ASP. We
recommend that you read them in order.

Note For ColdFusion versions of the same examples, see “Creating Report
Scripts with ColdFusion” on page 89.

Listing File Contents with ASP

This example shows a simple server page that lists the contents of a map-
resource database. Note that this page accesses the database directly, instead
of using the Autodesk MapGuide reporting feature. Later, we’ll see how
Autodesk MapGuide fits into the picture.

Let’s say you have an MWF file pointing to a database containing parcel
information, such as the lot number, street address, owner’s name and so on.
If you want to list the contents of the database at the bottom of an HTML
page displaying the map, you would first rename the HTML file with an .asp
extension and place it in a directory with script or execute permissions. Then
you would add some code to specify the scripting language, establish a
connection to the appropriate database records, and control the database
output.

The next sections describe each of those tasks in more detail.

Events Used to Create a Report Script

Event Description

Session_OnStart Runs the first time a user accesses your application.

Session_OnEnd Runs when a user’s session times out or when a user quits
your application.

Application_OnStart Runs once, when the first page of your application is
accessed for the first time by any user; does not run after
another user accesses the first page of your application. The
Web server needs to be shut down for Application_OnStart
to run again.

Application_OnEnd Runs when the Web server is shut down.
Creating Report Scripts with ASP | 111

Specifying a Scripting Language

ASP scripts are written in VBScript, a lightweight Visual Basic-like scripting
language, or in JScript, the Microsoft version of JavaScript. ASP files should
begin with a line telling ASP which language you’re using (although a default
of VBScript is assumed if the line is omitted). Since we’re using VBScript, our
line will look like this:

<%@ LANGUAGE="VBSCRIPT"%>

Note the use of <% and %>, which identify the line as the server-side code that
ASP should process.

Selecting Database Records

Next, we’ll add a some code to define a selected set of database records. This
selection is known as a recordset. To come up with a recordset, we need to
know which database table to connect to, and which records to select from
that table. If your map links to a table called Parcel_Data through an OLE
DB data source called Assessor, the recordset code will look like this:

<%
Set dbConnection = Server.CreateObject("ADODB.Connection")
dbConnection.Open("Assessor")
SQLQuery = "SELECT * FROM Parcel_Data Where Year_Built = '1963'"
Set RS = dbConnection.Execute(SQLQuery)
%>

This might seem complicated compared to ColdFusion’s <CFQUERY> tag, but
it will look familiar to Visual Basic programmers. The end result is a Recordset
object variable, RS, which represents all houses in Parcel_Data that have a
Year_Built value of 1963.

Note Don’t be put off by this code if you are unfamiliar with Visual Basic. All of
your ASP database queries will follow this basic format, with only the DSN and
SQL statement varying.

Let’s go through the recordset script line by line. The first line of code uses
the CreateObject method of the Server object to create a new
Connection object, which is assigned to the dbConnection variable.

Set dbConnection = Server.CreateObject("ADODB.Connection")

The next line opens a connection to the data source name (DSN), in this case
Assessor, and assigns that connection to the dbConnection variable. Note
that Open is a method of the Connection object, in this case the
dbConnection variable.

dbConnection.Open("Assessor")
112 | Chapter 6 Using Reports to Query and Update Data Sources

The third line creates a variable that holds a SQL statement specifying the
database records for houses built in 1963:

SQLQuery = "SELECT * FROM Parcel_Data Where Year_Built = '1963'"

The last line puts it all together, creating a Recordset object and assigning
it to an object variable named RS. Note that Execute is a method of the
Connection object, in this case dbConnection. We’re using Execute to
run the SQL statement we assigned to SQLQuery:

Set RS = dbConnection.Execute(SQLQuery)

Controlling the Output

Now that we have our Recordset object, let’s add a block of code that
controls how the database output is displayed on the page. This code should
appear within <BODY>, at the location where you want the database output
to appear. If you want to display the parcel number, owner’s name, and year
built, your output code will look like this:

<%
Do While Not RS.EOF
%>
<P>Parcel Number: <%=RS("APN")%>

Owner: <%=RS("Owner_Name")%>

Year Built: <%=RS("Year_Built")%></P>
<%
RS.MoveNext
Loop
%>

If you’re accustomed to client-side scripting, this code might look peculiar.
Notice how it is actually two different script tags that operate on HTML code
sandwiched in the middle. Let’s look at the HTML portion first:

<P>Parcel Number: <%=RS("APN")%>

Owner: <%=RS("Owner_Name")%>

Year Built: <%=RS("Year_Built")%></P>

As with ColdFusion, this is standard HTML plus a few variables. ASP variables
use the standard ASP script tags (<% and %>), as well as an equal sign that tells
ASP to substitute the actual value for the variable. In this case, the value is a
field in your map resource database. For example, RS("APN") is the APN
column in the database represented by the RS object you created earlier.

Without the accompanying script tags, the HTML would display the APN,
Owner_Name, and Year_Built fields for only the first record in the database:

Parcel Number: 941-0103-003-01
Owner: James P & Bonnie G Reed
Year Built: 1963
Creating Report Scripts with ASP | 113

This is a good start, but not quite what we want. To cycle through the
records, we’ll need to add some sort of looping code. That’s what the two
scripts are for.

The beginning script contains a single line, which operates on the RS object.
RS.EOF represents RS object’s end-of-file property. In effect, the line is saying
do the following until you reach the end:

Do While Not RS.EOF

The ending block contains two lines, one that advances to the next record in
the recordset and another that finishes up the loop structure:

RS.MoveNext
Loop

Now we’re ready to load the page in our browser.

Seeing the Results

Here’s a listing of the complete ASP file parcel_report.asp:

<HTML>
<HEAD>
<!-- code to create recordset -->
<%
Set dbConnection = Server.CreateObject("ADODB.Connection")
dbConnection.Open ("Assessor")
SQLQuery = "SELECT * FROM Parcel_Data Where YearBlt = '1963'"
Set RS = dbConnection.Execute(SQLQuery)
%>
<TITLE>ASP Test #1</TITLE>
</HEAD>
<BODY>
<H1>ASP Test #1</H1>
<!-- output code -->
<%
Do While Not RS.EOF
%>
<P>Parcel Number: <%=RS("APN")%>

Owner: <%=RS("Owner")%>

Year Built: <%=RS("yearblt")%></P>
<%
RS.MoveNext
Loop
%>
</BODY>
</HTML>
114 | Chapter 6 Using Reports to Query and Update Data Sources

The following is the page as it appears in a browser.

The HTML output

Like the earlier ColdFusion example, this page is very simple, only hinting at
the power of what you can do with ASP. And like the earlier example, this is
not really an Autodesk MapGuide application. The database happens to be
an Autodesk MapGuide resource, but it could be any database you have
access to through a DSN. In most cases, you will want to access your data-
bases through the Autodesk MapGuide Viewer by linking them to features
and layers in the map. The examples that follow show you how to do this.

Querying and Displaying Data via the Map with
ASP

Now that we’ve seen how ASP works, let’s use it with Autodesk MapGuide.
This example uses the StarterApp.mwf file from the Autodesk MapGuide Web
site. Note that the full set of Starter Application files is available for download
at http://www.autodesk.com/mapguidedemo.
Creating Report Scripts with ASP | 115

Setting Up the Report in Autodesk MapGuide Author

We’ll start by specifying report information in Autodesk MapGuide Author.
Our report will be called Parcel Data (ASP) and will access a server page whose
URL is http://www.yourserver.com/asp/parcel_report.asp. The server page
will display information about user-selected features on a layer called
Assessment. The Map Window Properties dialog box shows our selection.

Dialog box specifications for Parcel Data (ASP)

Here are descriptions of how we used the options on the Reports tab:

� Report—Specifies the name of the report as it appears in the Autodesk
MapGuide Viewer. Our report is named Parcel Data (ASP).

� URL—Specifies the name and location of the report script, in this case
parcel_report.asp on www.yourserver.com.

� Data—We left this field blank but could have used it to pass additional
URL parameters to parcel_report.asp. For example, if our server page con-
tained definitions for more than one query, we could have passed a
parameter telling the file which of the queries to run.

� Type—Specifies whether the report is based on the keys of selected fea-
tures (as this one is), or on the coordinates of a point the user clicks.

� For Map Layers—Specifies the layer or layers you want the report to be
linked to. Our report operates only on features on the Assessment layer.

� Parameter—Specifies the name of the URL parameter used to send the
feature key (or keys) to parcel_report.asp. The name can be anything you
want, as long as it matches the name you specified in parcel_report.asp.
We’ve selected the Autodesk MapGuide Author default, OBJ_KEYS.
116 | Chapter 6 Using Reports to Query and Update Data Sources

When a user selects one or more features from the Assessment layer and runs
the Parcel Data (ASP) report, Autodesk MapGuide constructs a URL that
invokes parcel_report.asp and tells it to generate a report on the selected
features, which are identified by their OBJ_KEY values. If the user selected a
single feature whose key was 941-0176-003-00, the URL would look like this:

http://www.yourserver.com/asp/parcel_report.asp?OBJ_KEYS='941-
0176-003-00'

If the user selected multiple features, the URL might look like this:

http://www.yourserver.com/asp
parcel_report.asp?OBJ_KEYS='941-0176-003-00','941-0176-006-00','941-0176-004-00'

Note that OBJ_KEYS is represented as a standard URL parameter. To ASP, this
parameter is no different from one submitted by an HTML form element. As
we’ll see in the next section, ASP processes it accordingly.

Creating the Report Script

Now let’s create the ASP file that will process the Autodesk MapGuide report.
The following code listing is for the parcel_report.asp file:

<HTML>
<HEAD>
<TITLE>ASP Report Data</TITLE>
</HEAD>
<BODY>
<!-- code to create recordset -->
<%
Set dbConnection = Server.CreateObject("ADODB.Connection")
dbConnection.Open ("assessor")
SQLQuery = "SELECT * FROM Parcel_Data Where APN IN (" & Request.Form ("OBJ_KEYS") & ")"
Set RS = dbConnection.Execute(SQLQuery)
%>
<H1>ASP Report Data</H1>
<!-- output code -->
<%
Do While Not RS.EOF
%>
<P>Parcel Number: <%=RS("APN")%>

Owner: <%=RS("Owner")%>

Year Built: <%=RS("yearblt")%></P>
<%
RS.MoveNext
Loop
%>
</BODY>
</HTML>

Note that the VBScript code is almost identical to that in the first example
(“Listing File Contents with ASP” on page 111). The only change is to the
value we assign the SQLQuery variable.
Creating Report Scripts with ASP | 117

As with the previous example, the statement is selecting records from the
Parcel_Data DSN. The difference is that the SQL statement now points to
Request.Form, the ASP Request object’s Form collection. The Request
object is used by ASP to parse submitted data received from a client as part of
a URL. Form is a collection representing the URL parameters, which can be
accessed from the collection by name. In this case, the collection has only
one member, the OBJ_KEYS parameter we specified in Autodesk MapGuide
Author.

The SQL statement is basically saying to select in Parcel_Data all records
whose APN field matches OBJ_KEYS. In other words, select the records that
correspond to the selected features on the map. If OBJ_KEYS contains
multiple keys, ASP outputs the feature data associated with each key.

Creating an HTML Page to Display the Map

The last step is to create an HTML page to display our map. The following
listing is for the parcel_map.htm file:

<HTML>
<HEAD>
<TITLE>ASP Example</TITLE>
</HEAD>
<BODY>
<H1>Querying and Displaying Data via the Map</H1>
<P>This example uses ASP to access an Autodesk MapGuide
Report</P>
<!-- embedded map -->
<OBJECT ID="map" WIDTH=600 HEIGHT=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL"
VALUE="http://www.yourserver.com/maps/StarterApp.mwf>
<EMBED SRC="http://www.yourserver.com/maps/StarterApp.mwf
NAME="map"
WIDTH=600 HEIGHT=250>
</OBJECT>
</BODY>
</HTML>
118 | Chapter 6 Using Reports to Query and Update Data Sources

Seeing the Results

We’re ready to view parcel_map.htm in our Web browser, as shown in the
following illustration. Now, users can generate a report on one or more map
features by selecting the features, right-clicking and selecting View ➤ Reports
from the popup menu, and then selecting Parcel Data (ASP).

Displaying the parcel data report in a new window

This report looks pretty good, but we can still do a few things to improve the
interface.
Creating Report Scripts with ASP | 119

Redirecting Report Output

To avoid cluttering the desktop, let’s generate the report in the current
browser window, instead of displaying it in a new instance of the browser.
Go back to the parcel_map.htm file and modify the embedded map code:

<OBJECT ID="map" width=600 height=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL"
VALUE="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=_self>
<EMBED src="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=_self
NAME="map"WIDTH=600 HEIGHT=250>
</OBJECT>

Notice that we’ve added a Autodesk MapGuide Viewer URL parameter to the
map reference:

http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=_self

ReportTarget specifies the window or frame in which you’d like your
report to display. By specifying _self, we redirect the report output so that
it displays in the current window.

Displaying the parcel data report in the current window
120 | Chapter 6 Using Reports to Query and Update Data Sources

At first glance this appears to be a good solution, but it has some problems.
Users might get confused about where they are. Worse yet, when they click
the Back button, they will find that the map has been reloaded and the loca-
tion they zoomed to has been lost. A better approach is to display the map
and the report in two frames of the same window. Let’s do that now.

Start by creating a standard HTML file that defines a frameset. The frameset
should display the map on the left and a blank page on the right:

<HTML>
<HEAD>
<TITLE>ASP Report Data</TITLE>
</HEAD>
<!-- frames -->
<FRAMESET COLS="65%,*">
<FRAME NAME="Left" SRC="parcel_map.htm" MARGINWIDTH="10"
MARGINHEIGHT="10" SCROLLING="auto" FRAMEBORDER="yes">
<FRAME NAME="Right" SRC="about:blank" MARGINWIDTH="10"
MARGINHEIGHT="10" SCROLLING="auto" FRAMEBORDER="yes">
</FRAMESET>
</HTML>

Notice that we’ve assigned the names Left and Right to the frames. The
source for Left is parcel_map.htm, the file containing our embedded map.
The source for Right is about:blank, a standard browser function whose
purpose is to display a blank window or frame.

We have the frameset, so let’s go back to the parcel_map.htm file and change
the ReportTarget parameter to Right, the name we assigned to our right-
hand frame:

<OBJECT ID="map" WIDTH=600 HEIGHT=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL"
VALUE="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=
Right>
<EMBED
SRC="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=Ri
ght
NAME="map"WIDTH=600 HEIGHT=250>
</OBJECT>

Users can now invoke as many reports as they want, without losing their
place in the map or calling a new instance of the browser.

The following illustration shows with the map and the report in two frames
of the same window.
Creating Report Scripts with ASP | 121

Displaying the map and report in frames

Adding a Button with the Viewer API

An Autodesk MapGuide report is generated by right-clicking the map and
then choosing View ➤ Reports from the popup menu. We’ll create a Parcel
Report button that will display the report.

First we’ll add the following <SCRIPT> tag to the parcel_map.htm file:

<SCRIPT>
function getMap()
{

if (navigator.appName == "Netscape")
return parent.Left.document.map;
else
return parent.Left.window.map;

}

function runReport()
{

parent.Right.document.write("<P>Select one or more parcels first.</P>");
getMap().viewReport('Parcel Data (ASP)');

}
</SCRIPT>
122 | Chapter 6 Using Reports to Query and Update Data Sources

The <SCRIPT> tag holds two JavaScript functions: getMap and runReport,
which displays our Autodesk MapGuide report. The runReport function
consists of two statements. The first statement writes a line of text to the
right-hand frame of our report application, instructing users to select one or
more map features. This instruction displays each time runReport is
invoked, regardless of whether the user has selected features. If features are
selected, the instructions are replaced in the frame by the contents of the
newly generated report; otherwise, the instructions remain in the frame to
provide feedback.

Note parent refers to the top-level frame and Right is the name we specified
for our right-hand frame in parcel_frames.htm. Refer to a third-party JavaScript
manual for more information on writing to frames and windows.

The second statement uses the viewReport method to run our report and
begins by calling getMap, which returns the appropriate map feature. That
feature is then passed to viewReport, which directs Autodesk MapGuide to
display Parcel Data (ASP).

Now that our function is defined, to call it we’ll add a <FORM> element to
parcel_map.htm:

<FORM>
<INPUT TYPE="button" VALUE="Parcel Report" ONCLICK="runReport()"</INPUT>
</FORM>

This is a standard HTML form consisting of a single button named Parcel
Report. By setting the value of ONCLICK to runReport, we specify that the
function should be invoked each time a user clicks the button.

Note A JavaScript function must appear above the JavaScript code that calls it.
This keeps users from trying to call a function before it has been parsed by the
browser. JavaScript functions are typically defined in a single <SCRIPT> tag in
the <HEAD> section of the HTML file.
Creating Report Scripts with ASP | 123

This the final text of parcel_map.htm, as well as the finished application:

The following illustration shows the results of the application if no map
features have been selected.

parcel_map.htm

<HTML>
<HEAD>
<TITLE>ASP Example</TITLE>
<!-- JavaScript functions -->
<SCRIPT>
// function #1
function getMap()
{

if (navigator.appName == "Netscape")
return parent.Left.document.map;

else
return parent.Left.window.map;

}
// function #2
function runReport()
{

parent.Right.document.write("<P>Select one or more parcels first.</P>");
getMap().viewReport('Parcel Data (ASP)');

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Querying and Displaying Data via the Map</H1>
<P>This example uses ASP to access an Autodesk MapGuide
Report</P>
<!-- embedded map -->
<OBJECT ID="map" WIDTH=600 HEIGHT=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL"
VALUE="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=
Right>
<EMBED
SRC="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=Ri
ghtNAME="map" WIDTH=600 HEIGHT=250>
</OBJECT>
<!-- Parcel Report button -->
<FORM>
<INPUT TYPE="button" VALUE="Parcel Report" ONCLICK="runReport()"</INPUT>
</FORM>
</BODY>
</HTML>
124 | Chapter 6 Using Reports to Query and Update Data Sources

Displaying the map, a report frame, and a Parcel Report button

Modifying a Database via the Map with ASP

Users can add points to a map from their browsers. The added points are then
stored in a database on the server and are visible to anyone viewing the map.
The example shows a hypothetical Incident Log application that will be used
to track crimes. The application consists of the following components:

� Three server pages, getpoint.asp, showform.asp, and insert.asp. As their
names suggest, the files receive point coordinates from Autodesk
MapGuide, display a form that takes additional user input, and add the
point data to a database on the server.

� An Autodesk MapGuide report (and later, a custom menu item) that
passes digitized point coordinates to the getpoint.asp file.

� An HTML page to host the map (except for minor text changes, this page
will be identical to parcel_map.htm from the previous example).

� An Incidents database table on the server and a new map layer (also called
Incidents) to display the contents of that table.
Creating Report Scripts with ASP | 125

Setting Up the Report in Autodesk MapGuide Author

We’ll start by specifying the report information in Autodesk MapGuide
Author. Our report will be called Incidents (ASP), and it will pass the lat/lon
coordinates of a user-specified point to server page whose URL is
http://www.yourserver.com/asp/getpoints.asp.

Dialog box specifications for Incidents (ASP) report

The following show how we used the options on the Reports tab:

� Report—Specifies the name of the report as it appears in the Autodesk
MapGuide Viewer. Our report is named Incidents (ASP).

� URL—Specifies the name and location of the report script, in this case
getpoint.asp on www.yourserver.com.

� Data—We left this field blank but could have used it to pass additional
URL parameters to getpoint.asp.

� Type—Specifies whether the report is based on the keys of selected
features, or on the coordinates of a point the user clicks. We chose the
second option: Digitize a point and send point.

� Prompt—Specifies the text to be displayed in a message box prompting
users to specify a point. If this field is left blank, no message box is displayed.

When a user runs the Incidents (ASP) report, Autodesk MapGuide prompts
the user to specify a point, then invokes getpoint.asp, passing the point’s
lat/lon coordinates as URL parameters (more specifically, the coordinates are
sent as form data via the HTTP POST method). For example, if the user spec-
ified a point with coordinate values of 37.721,-121.943, the URL would be:

http://www.yourserver.com/getpoint.asp?LAT=37.721&LON=-121.943
126 | Chapter 6 Using Reports to Query and Update Data Sources

Creating the Report Scripts

Next we’ll create the three ASP files getpoint.asp, showform.asp, and insert.asp.

The first file, getpoint.asp, creates a small browser window and then calls a
second file, showform.asp, passing along the coordinate values it received
from Autodesk MapGuide:

<SCRIPT language="JavaScript">
window.close();
var loc = "showform.asp?LAT=" + "<%=Request.Form("lat")%>"
+ "&LON=" + "<%=Request.Form("lon")%>";
win = window.open(loc,"ShowFormWin",
"width=300,height=170,dependent=yes,resizable=yes");
win.focus();
</SCRIPT>

Note that getpoint.asp consists of a single <SCRIPT> element containing a
block of JavaScript code; because the file doesn’t display any text, no other
HTML tags are needed. Let’s look at the code line by line.

When getpoint.asp is first called it uses a default browser window similar to
the one in the previous example. The first line of code closes that window.

Note Because the browser parses the entire <SCRIPT> block before running
the first line of code, we can safely close the window, knowing our script will con-
tinue to run. Be aware, however, that this strategy will get you into trouble if your
file contains function calls or other multiple <SCRIPT> blocks. See your
JavaScript documentation for more information.

The next line constructs a URL and assigns it to a variable called loc. Note
that the line is a mix of both JavaScript and ASP code. The ASP code is
processed first, on the server. Then the line is sent to the browser as standard
JavaScript. Let’s look at how it works.

As you might recall from the previous example, ASP variables use the stan-
dard ASP script tags (<% and %>), as well as an equal sign that tells ASP to
substitute the actual value for the variable. In this case, the variables hold the
values Request.Form("lat") and Request.Form("lon"), both of
which refer to Request.Form, the ASP Request object’s Form collection. The
Request object is used by ASP to parse submitted data received from a client
as part of a URL. Form is a collection representing HTML form parameters
transmitted via the HTTP POST method; these parameters can be accessed
from the collection by name. In this case, the collection has two members:
the LAT and LON parameters that were posted to the file by the Autodesk
MapGuide Viewer. After the ASP code is processed, a line similar to the
following is sent to the browser:

var loc = "showform.asp?LAT=" + "37.721" + "&LON=" + "-121.943";
Creating Report Scripts with ASP | 127

The effect of this line is to create a variable called loc and to assign it the
value showform.asp?LAT=37.721&LON=-121.943.

The next line creates a new browser window, using the loc variable to supply
the URL. The last line shifts browser focus to the new window we just created.

Now, let’s look at the second ASP file, the showform.asp file:

<HTML>
<HEAD>
<TITLE>Attribute Input</TITLE>
</HEAD>
<BODY BGCOLOR="SILVER">
<FORM Name=myForm METHOD="POST" ACTION="insert.asp">
<INPUT TYPE="HIDDEN" NAME="rpt_lat"
VALUE="<%=Request.QueryString("lat")%>">
<INPUT TYPE="HIDDEN" NAME="rpt_lon"
VALUE="<%=Request.QueryString("lon")%>">
Incident Report:

<INPUT TYPE="TEXT" MAXLENGTH="30" NAME="rpt_info" SIZE="33">

Reported By:

<INPUT TYPE="TEXT" MAXLENGTH="30" NAME="rpt_by" SIZE="33">

<CENTER>
<INPUT TYPE="SUBMIT" NAME="Submit" VALUE="OK">
<INPUT TYPE="button" NAME="CancelButton" VALUE="Cancel"
onClick="window.close()">
</CENTER>
</FORM>
</BODY>
</HTML>

The showform.asp file shows a form, used to enter a description of the inci-
dent. The form follows HTML syntax, but also contains the ASP variables:

<%=Request.QueryString("lat")%>
<%=Request.QueryString("lon")%>

The Request.QueryString collection is similar to Request.Form, but
instead of holding HTML form values transmitted via the HTTP GET method,
it can hold either of the following:

� HTML form parameters transmitted via the HTTP POST method

� URL parameters added to the URL directly, not generated by a form

We use QueryString in this case, because the URL parameters that were sent
to showform.asp were created explicitly by JavaScript code in getpoint.asp.

Note Use Request.Form if your data is being transmitted from an HTML form
via the HTTP POST method. Use Request.QueryString if your data is being
transmitted from an HTML form via the HTTP GET method, or if it is coming from
a URL parameter not associated with any form.
128 | Chapter 6 Using Reports to Query and Update Data Sources

In short, an HTML form collects data from the user and sends that data to a
program in the form of a URL. The form in showform.asp calls yet another ASP
file, insert.asp, passing it the following parameters:

� The latitude value obtained from the ASP variable
<%=Request.QueryString("lat")%>; this value is passed as the form
parameter rpt_lat.

� The longitude value obtained from the ASP variable
<%=Request.QueryString("lon")%>; this value is passed as the form
parameter rpt_lon.

� An incident description entered in the form by a user; this description is
passed as the form parameter rpt_info.

� A name entered in the form by a user; this name is passed as the form
parameter rpt_by.

The following illustration shows the showform.asp form, as displayed in the
window created by getpoint.asp.

Data entered in the showform.asp form
Creating Report Scripts with ASP | 129

Specifying the lat/lon point 37.721,-121.943 by clicking the map and filling
out the form as shown in the illustration will result in the following URL
being constructed and passed to the insert.asp file:

insert.asp?rpt_lat=37.721&rpt_lon=-
121.943&rpt_info=A+cat+was+stolen&rpt_by=J+Appell

Now we’ll see how insert.asp handles the URL:

<%
Set dbConnection = Server.CreateObject("ADODB.Connection")
dbConnection.Open("assessor")
SQLQuery =
"INSERT into Incidents (lat, lon, description, reported_by)" & _
"values('" & Request.Form("rpt_lat") & "','" & _
Request.Form("rpt_lon") & "','" & Request.Form("rpt_info") & _
"','" & Request.Form("rpt_by") & "')"
dbConnection.Execute(SQLQuery)
%>
<SCRIPT language="JavaScript">
alert("Point added successfully! Reload the map to see your
changes.");
window.close();
</SCRIPT>

Like getpoint.asp, the file contains no displayable text. Instead, it contains
two blocks of code. One is an ASP script, written in VBScript. The other is an
HTML <SCRIPT> element containing JavaScript code.

The first line of code uses the CreateObject method of the Server object
to create a new Connection object, which is assigned to a variable called
dbConnection.

The next line opens a connection to the data source name (DSN), in this case
Assessor, and assigns that connection to the dbConnection variable. Note
that Open is a method of the Connection object, in this case
dbConnection.

The third line creates a variable that holds an SQL statement specifying the
data we want to add to the Incidents table.

Because insert.asp is receiving its information directly from a form (instead of
from a URL we constructed programmatically), we call Request.Form
instead of Request.QueryString. After Request.Form supplies the values
from showform.asp, the line looks like this:

SQLQuery =
"INSERT into Incidents (lat, lon, description, reported_by)" & _
"values('37.721','-121.943','A cat was stolen','J Appell')"

The last line runs the SQL statement we assigned to SQLQuery, adding the
new record to the database.
130 | Chapter 6 Using Reports to Query and Update Data Sources

Note If a user enters an apostrophe (like the one found in can’t, won’t, and
doesn’t) into the showform.asp form, it will cause a syntax error when ASP tries to
execute the SQL statement. To avoid this, add code to replace a single apostro-
phe with two apostrophes as follows: Change Request.Form("rpt_info")
to Replace(Request.Form("rpt_info"),"'","''"). See your ASP docu-
mentation for more information.

In the <SCRIPT> element, the first line displays an alert telling users to
reload the map to see their changes. The second line closes the form window,
leaving only the original map window.

Creating an HTML Page to Display the Map

The last step is to create an HTML page to display our map. We’ll use the
parcel_map.htm file from the previous example, modifying the <H1> and the
short paragraph of descriptive text, but leaving the rest of the file unchanged:

<HTML>
<HEAD>
<TITLE>ASP Example</TITLE>
</HEAD>
<BODY>
<!-- Only the next two lines are different -->
<H1>Modifying a Database via the Map</H1>
<P>This example uses ASP to update a database map
resource</P>
<!-- embedded map -->
<OBJECT ID="map" WIDTH=600 HEIGHT=250
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL"
VALUE="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=
Right>
<EMBED
SRC="http://www.yourserver.com/maps/StarterApp.mwf?ReportTarget=Ri
ghtNAME="map" WIDTH=600 HEIGHT=250>
</OBJECT>
</BODY>
</HTML>
Creating Report Scripts with ASP | 131

Creating a Custom Menu Item

There a few problems with this design. One is that it requires users to select
View ➤ Reports from the map-window popup menu, then select Incidents
(ASP) from the list, then clear the JavaScript alert box that tells them to
select a point, and then digitize the point. Another problem is that because
our report isn’t associated with a layer, users can add items to the Incidents
map layer even when that layer isn’t visible.

We can solve both of these problems by creating a custom menu item that
takes the place of the report. Select the options, as shown in the following illus-
tration, on the Popup Menu tab of the Map Window Properties dialog box.

Dialog box specifications for Incident Log popup menu item

Here are descriptions of how we used the options on the Popup Menu tab:

� New Menu Item—Creates a new popup menu item below the item
selected in the Popup Menu list.

� Name—Specifies the name of the menu item as it will appear in the
Autodesk MapGuide Viewer. Our menu item is named Incident Log.

� Action—Specifies the task to be performed by the menu item. We selected
GetPointAndSendToURL from the drop-down list.

� Arguments—Specifies arguments to use with the selected action, in this case
the path to getpoint.asp and the name of the layer we want to add data to.

When users select Incident Log from the popup menu, they will immediately
be able to enter a point, thus bypassing several mouse clicks. Also, if the Inci-
dents layer is not visible because the map is zoomed outside of the layer’s
display range, the Incidents Log menu item will be unavailable.
132 | Chapter 6 Using Reports to Query and Update Data Sources

Accessing Your Application with the Viewer API

Because the Incident Log application runs in a separate instance of the
browser, it does not have programmatic access to the map window. This
means the application cannot refresh the map automatically. (That’s why we
have a JavaScript alert box telling the user to reload the map manually.)

To solve this problem and to avoid having the need for the user to reload the
map manually, you can use the Autodesk MapGuide Viewer API to access the
Incident Log application. Instead of creating a report or custom menu item,
add a button or other interface element to the HTML page hosting the map
(or to a frame or child window with programmatic access to that page). The
button should invoke a JavaScript function that does the following:

� Uses the digitizePoint method to get the coordinates of a user-speci-
fied point.

� Invokes getpoint.asp, passing the point coordinates as URL parameters.

� Refreshes the map after getpoint.asp, showform.asp, and insert.asp have
completed their work.
Creating Report Scripts with ASP | 133

134

�

�

�

�

�

�

7
Applications
Overview

Custom redlining
application

Municipal application

Facility management
application

DWG filtering application

SDF Component Toolkit
applications
This chapter demonstrates various features of the

Autodesk MapGuide® Viewer API by describing and

including source code for several applications.
135

Overview

This chapter provides examples of how you might use the Autodesk
MapGuide Viewer API to create real-world applications. Be sure to also visit
the Autodesk MapGuide Web site at www.autodesk.com/mapguide for addi-
tional information about Autodesk MapGuide development, including demo
applications, real customer sites, and other developer resources.

When you have finished reviewing the following examples, be sure to read
Chapter 6, “Using Reports to Query and Update Data Sources,” which
provides more information about creating custom reports and server-side
scripts that enable users to dynamically update attribute data sources. This
technique is illustrated in the Municipal Application, which begins on page
140.

Custom Redlining Application

Redlining applications allow a user to add annotations to a drawing or map
without using the original authoring application or modifying the original
document. You can use the Autodesk MapGuide Viewer API to create a
custom redlining application that allows users to mark up a map using the
Autodesk MapGuide Viewer. The user’s markups are saved to a special layer
type called a client redline layer. Client markups can be printed or saved
(along with the rest of the map) to an MWF.

You can make your application as sophisticated as your needs warrant, but
the basic process for creating a redlining application is simple.

To create a custom redline application

1 Use the MGMap.createLayer method to create the redline layer, or, if the
layer already exists, you can access it with the MGMap.getMapLayer
method.

2 Use the MGMapLayer.createMapObject method to add an empty red-
line object to the layer.

3 Use the MGMapObject add methods to add one or more primitives to the
redline object (primitives are the individual symbols, polylines, polygons,
or text blocks that make up a redline object). You can add a single primi-
tive or combine several primitives to create a complex object. For exam-
ple, you might create a complex object consisting of an arrow and a text
callout.
136 | Chapter 7 Applications

4 Use the MGMap.saveMWF method to save the map file to an MWF on the
user’s machine or a network server. MGMap.saveMWF is not available for
Autodesk MapGuide Viewer, Java Edition.

Note For information about adding and deleting features from the data source
itself (such as an SDF file), rather than saving changes to an MWF, see “SDF Com-
ponent Toolkit Applications” on page 171.

Redlining Example Code

The following example shows one way to write a simple redlining applica-
tion. It lets the user create a redlining layer, add polygon objects to that layer,
and save the map to a drive on a local machine. The user interface is sparse,
consisting of a small HTML form with a text box and two buttons, as shown
in the following illustration.

Redlining example

Here is the code for the form:

<FORM NAME="the_form">
Polygon Name: <INPUT TYPE="text" VALUE="" NAME="the_textbox">
<INPUT TYPE="button" VALUE="Add/Update Polygon"

OnClick="add_pgon();" NAME="a_button">
<INPUT TYPE="button" VALUE="Save It!" OnClick="save_it();"

NAME="another_button">
</FORM>
Custom Redlining Application | 137

The Add/Update Polygon button calls a JavaScript function that lets the user
draw a polygon by digitizing points on the map. The function first checks to
see if there’s a value in the Polygon Name check box. If there is a value, the
function calls either the digitizePolygon or digitizePolygonEx
method. Otherwise, the function displays an alert and exits:

function add_pgon()
{

// get map object
var map = getMap();

// exit function if 'Polygon Name' text box is empty
if (document.the_form.the_textbox.value == "")
{

alert("Please enter a polygon name.")
return;

}

// if browser is Netscape, use 'Ex' version and pass
// observer applet; if browser is Internet Explorer,
// use 'non-Ex' version with no argument
if (navigator.appName == "Netscape")

map.digitizePolygonEx(document.obs);
else

map.digitizePolygon();
}

The digitizePolygon and digitizePolygonEx methods both fire the
onDigitizedPolygon event, passing it the map object, the number of
polygon vertices, and the coordinates of those vertices. The
onDigitizedPolygon event looks for a JavaScript function of the same
name and, if that function exists, executes it. In fact, the
onDigitizedPolygon function does exist, because we’ve created it. Here’s
the code for that function:

onDigitizedPolygon Function

function onDigitizedPolygon(map, numPoints, points)
{

// create variable and assign it user-specified value
// from 'Polygon Name' text box
var formText = document.the_form.the_textbox.value;

// create redline layer, or get it if it already exists
var layer = map.getMapLayer("My Redline Layer");
if (layer == null)

layer = map.createLayer("redline", "My Redline Layer");
// create redline object or get it if it exists (getMapObject
// takes an object key as its value, while createMapObject
// takesa key and a name -- the formText variable supplies
// both of those values)
138 | Chapter 7 Applications

The example above is a very simple application designed to illustrate
redlining. However, your application can have more features, such as
allowing users to add other primitives besides polygons. Also, you can exert
more control over how the primitives appear on screen or to query the state
of existing redline objects. To learn more about these topics, refer to the
following sections in the Autodesk MapGuide Viewer API Help:

� For information about creating primitives, look up the MGMapObject add
methods (addCirclePrimitive, addPolygonPrimitive, and so on).
Also look up the MGMapdigitize methods and their corresponding
events.

� For information about controlling the appearance of redline objects, look
up MGEdgeAttr, MGFillAttr, MGLineAttr, MGSymbolAttr,
MGTextAttr, and MGRedlineSetup.

� For information about querying redline objects, look up MGPrimitive.

var obj = layer.getMapObject(formText);
if (obj == null)

var obj = layer.createMapObject(formText, formText, "");

// create MGCollection that holds user-specified polygon vertices
var user_vertices = map.createObject("mgcollection");
user_vertices.add(numPoints);

// use MGCollection to create polyline primitive and add it to
// redline object
obj.addPolylinePrimitive(points, user_vertices, false);

// clear contents of 'Polygon Name' text box
document.the_form.the_textbox.value = "";

}
The Save It! button calls a JavaScript function that saves the map
to the user’s hard drive. The function prompts the user for the map
password, then calls the MGMap.saveMWF method, and saves the map to
the specified path:
function save_it()
{
var fName = "c:\\My Documents\\my_map.mwf";
var password = prompt("Please enter a password.", "");

if (getMap().saveMWF(fName, password))
alert("Map has been saved!");

else
alert("Unable to save map.");

}

onDigitizedPolygon Function (continued)
Custom Redlining Application | 139

Municipal Application

This Municipal Application demonstrates how you can monitor the water
and sewer systems of a city. In the event of water distribution system prob-
lems, the application can notify the user, or a user can add an incident to the
map and generate reports. The application uses color digital imagery to help
orient the user.

At the left of the window, the standard legend allows you to turn layers on
and off and select them. At the right of the window the application includes
Incident Monitor, where users are notified if there are problems with the
water distribution system, and Layer Control, which allows you to turn off
the incident layer, turn off all vector layers at the same time, and turn off the
raster layer. These controls are useful for finding information quickly. Lastly,
under Incident Entry and Reporting, the digitize incident and reporter
buttons allow the user to add an incident to the map and generate reports
about selected features.

Municipal application
140 | Chapter 7 Applications

Municipal Application Example Code

Following is the source code for the controls. Additional comments have
been added to the code to give you a better idea of how the scripting works.
To view the source code for the other frames in this application, go to the
application online at www.autodesk.com/mapguidedemo.

Municipal Application Example Code

<HTML>
<HEAD>
<TITLE>MUNICIPAL</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--

// Get full browser name and assign it to tempName variable;
// then assign first 8 letters of tempName to browserName variable
var tempName = navigator.appName;
var browserName = tempName.substring(0,8);

// Map object variable, to be used later
var map;

// Set browserId variable: '1' for netscape, '2' for IE, else '0'
if (browserName == 'Netscape')

var browserId = 1;
else if (browserName == 'Microsof') // just first 8 letters...

browserId=2;
else

browserId = 0;

// =-= //
// Function: getMap()
// Description: Get appropriate map object for IE or Netscape
// Arguments: none
// Returns: map object
// =-= //
function getMap()
{

// Get appropriate MGMap object; type depends on browserId value
if (browserId == 1)

map = top.main.document.embeds[0]; // Netscape map object
else if (browserId == 2)

map = top.main.document.map; // IE map object
else

map = null; // none if other browser
return map; //return map object

}

Municipal Application | 141

// =-= //
// Function: notify()
// Description: Turns on Incident Monitor by calling
// CreateInWindow() function, below
// Arguments: none
// Returns: nothing
// =-= //
function notify()
{

// Call function
CreateInWindow();

}

// =-= //
// Function: CreateInWindow()
// Description: Calls a ColdFusion file and generates the
// resulting incident report in a new window (called by 'On'
// button, under 'Incident Monitor')
// Arguments: none
// Returns: nothing
// =-= //

// First, a global variable, defined *outside* of the function body
var InWindow;

// Function starts here
function CreateInWindow()
{

// Set 'URL' variable to location of ColdFusion file used to
// generate report; then
// open URL in new window called 'InWindow'
var URL =

"http://www.gridnorth.com/interdemo/municipal/reports/Incident1.cfm"
InWindow = open(URL,"InWindow", "toolbar=no,width=480,

height=350,directories=no,status=no,
scrollbars=YES,resizable=YES,menubar=no")

}

// =-= //
// Function: notifyoff()
// Description: Closes window containing incident report
// (called by 'Off' button, under 'Incident Monitor')
// Arguments: none
// Returns: nothing
// =-= //
function notifyoff()
{

// If 'InWindow' doesn't exist, or if it's already closed,
// terminate function; otherwise close 'InWindow'

Municipal Application Example Code (continued)
142 | Chapter 7 Applications

if ((InWindow == null) || (InWindow.closed))
return;

else
InWindow.close();

}

// =-= //
// Function: Incidents(type)
// Description: Turns Incidents layer on or off (called by
// ON/OFF buttons, under Layer Control: Incidents)
// Arguments: string ('On' or 'Off')
// Returns: nothing
// =-= //
function incidents(type)
{

map = getMap(); // Get instance of MGMap
if (map.isBusy() == false) // If Autodesk MapGuide Viewer is not busy...
{

// ...get "Incidents" layer
var mapLayer1 = map.getMapLayer("Incidents");

// If function was called with 'Off', make the
// layer invisible; otherwise make the layer visible
if (type == 'Off')

mapLayer1.setVisibility(false);
else

mapLayer1.setVisibility(true);

// Tell the Autodesk MapGuide Viewer to rebuild layer
// when map is refreshed; then refresh map
mapLayer1.setRebuild(true);
map.refresh();

}
// If Autodesk MapGuide Viewer is busy, don't do the stuff above;
// instead, display alert
else

alert("The Autodesk MapGuide Viewer is busy. Please try again
in a few seconds.");

}

// =-= //
// Function: vector(type)
// Description: Turns vector layers on or off (called by
// ON/OFF buttons, under Layer Control: Vector Layers)
// Arguments: string ('On' or 'Off')
// Returns: nothing
// =-= //
function vector(type)
{

Municipal Application Example Code (continued)
Municipal Application | 143

map = getMap(); // Get instance of MGMap
if (map.isBusy() == false) // If Autodesk MapGuide Viewer is not busy...
{

// ...assign a bunch of layers to a bunch of variables
var mapLayer2 = map.getMapLayer("Population > 100000");
var mapLayer3 = map.getMapLayer("Population > 50000");
var mapLayer4 = map.getMapLayer("Population > 500");
var mapLayer5 = map.getMapLayer("Population > 0");
var mapLayer6 = map.getMapLayer("Railroads");
var mapLayer7 = map.getMapLayer("Interstates");
var mapLayer8 = map.getMapLayer("Highways");
var mapLayer9 = map.getMapLayer("Major Roads");
var mapLayer10 = map.getMapLayer("Minor Roads");
var mapLayer11 = map.getMapLayer("Water Service Acct.");
var mapLayer12 = map.getMapLayer("Water - 3 inch Valves");
var mapLayer13 = map.getMapLayer("Water - Point of Service");
var mapLayer14 = map.getMapLayer("Water - Distribution");
var mapLayer15 =

map.getMapLayer("Water - 3 inch Distribution");

var mapLayer16 =
map.getMapLayer("Marin County Land Parcels");

var mapLayer17 = map.getMapLayer("Population Density");
var mapLayer18 = map.getMapLayer("ZIP Codes");
var mapLayer19 = map.getMapLayer("Counties");

// If function was called with 'Off', make the
// following layers invisible...
if (type == 'Off')
{

for (i=2; i<20; i++;)
{

mapLayer[i].setVisibility(false);
}

}
// ...otherwise, make the following layers visible
else
{

for (i=2; i<20; i++;)
{

mapLayer[i].setVisibility(true);
}

}
// Tell the Autodesk MapGuide Viewer to rebuild the following layers
// when the map is refreshed
for (i=2; i<20; i++;)
{

mapLayer[i].setRebuild(true);
}

Municipal Application Example Code (continued)
144 | Chapter 7 Applications

// Refresh the map
map.refresh();

// End the if statement that verified not busy
}
// If Autodesk MapGuide Viewer is busy, don't do the stuff above;
// instead, display alert
else

alert("The Autodesk MapGuide Viewer is busy. Please try again
in a few seconds.");

// End the function
}

// =-= //
// Function: raster(type)
// Description: Turns raster layer on or off. (called by
// ON/OFF buttons, under Layer Control: Raster Layers)
// Arguments: string ('On' or 'Off')
// Returns: nothing
// =-= //
function raster(type)
{

map = getMap(); // Get instance of MGMap

// If Autodesk MapGuide Viewer is not busy get current map scale, then assign
// "San Rafael" layer to mapRastLayer variable...
if (map.isBusy() == false) {

var CurrentScale = map.getScale();
var mapRastLayer = map.getMapLayer("San Rafael");

// If scale is less than 1:20,000 and if function was called
// with 'On', make mapRastLayer visible
if (CurrentScale < 20000 && type == 'On')
{

mapRastLayer.setVisibility(true);
mapRastLayer.setRebuild(true);
map.refresh();

}
// If scale is less than 1:20,000 and if function was called
// with 'Off', make mapRastLayer invisible.
if (CurrentScale < 20000 && type == 'Off')
{

mapRastLayer.setVisibility(false);
mapRastLayer.setRebuild(false);
map.refresh();

}
}
// If Autodesk MapGuide Viewer is busy, don't do the stuff above;

Municipal Application Example Code (continued)
Municipal Application | 145

// instead, display alert
else

alert("The Autodesk MapGuide Viewer is busy. Please try again
in a few seconds."); }

// =-= //
// Function: digit()
// Description: Lets users create report data for a specified
// point. (called by the 'Digitize Incident' button, under
// 'Incident Entry & Reporting')
//
// NOTE: This function just gathers the point coordinates,
// fires the onDigitizedPoint event, and passes the coordinates
// to that event. The event is linked to a function (defined
// in a separate frame -- see www.autodesk.com/mapguidedemo for
// the source) that runs a ColdFusion file and creates a new
// window to hold the ColdFusion-generated HTML output. The HTML
// output includes a form that lets enter text and add that text
// to the map as point data.
//
// Arguments: none
// Returns: nothing
// =-= //
function digit()
{

// Use browserId variable (defined at beginning of script)
// to determine if user has Netscape or Internet Explorer;
// doesn't bother to call getMap(), because entire function
// varies by browser

// If Netscape...
if (browserId == 1)
{

// Get instance of MGMap, assign to map variable
map = parent.main.document.embeds[0];

// If Autodesk MapGuide Viewer is not busy, call digitizePoint() method;
// otherwise display alert (because digitizePoint() fires
// the onDigitizedPoint event, we must pass the observer
// as a function argument)

if (map.isBusy() == false)
map.digitizePoint(parent.rightempty.document.obs);

else
alert("The Autodesk MapGuide Viewer is busy. Please try again

in a few seconds.");
}
// If Internet Explorer...
if (browserId == 2)

Municipal Application Example Code (continued)
146 | Chapter 7 Applications

{

// Get instance of MGMap, assign to map variable
map = parent.main.document.map;

// If Autodesk MapGuide Viewer is not busy, call
// digitizePoint() API method;
// otherwise display alert
if (map.isBusy() == false)

map.digitizePoint();
else

alert("The Autodesk MapGuide Viewer is busy. Please try again
in a few seconds.");

}
}

// =-= //
// Function: reporter()
// Description: Generates report data for selected map features
// (called by 'Reporter' button, under 'Incident Entry
// & Reporting)
// Arguments: none
// Returns: nothing
// =-= //
function reporter()
{

map = getMap(); // Get instance of MGMap

// If Autodesk MapGuide Viewer is not busy...
if (map.isBusy() == false)
{

// Get object representing current selection, assign; then
// get number of map features in that selection
var sel = map.getSelection();
var NumSel = sel.getNumObjects();

// If selection has at least one object, display View Reports
// dialog; otherwise display alert
if (NumSel > 0)

map.viewReportsDlg();
else

alert("You need to select map features before you can
generate a report.");

}
// If Autodesk MapGuide Viewer is busy, don't do the stuff above;
// instead, display alert
else

alert("The Autodesk MapGuide Viewer is busy. Please try again
in a few seconds.");

Municipal Application Example Code (continued)
Municipal Application | 147

}

// =-= //
// Function: showIncidents()
// Description: Constructs SQL 'Where' statement requesting map
// features (request is based on user's selection from 'Date' and
// 'Status' drop-downs, under 'Incident Entry & Reporting'); sends
// the SQL statement to the database that's linked to the 'Incidents'
// layer; then refreshes the map, causing the requested features
// to display
// Arguments: none
// Returns: none
// =-= //
function showIncidents()
{

map = getMap(); // Get instance of MGMap

// If Autodesk MapGuide Viewer is not busy...
if (map.isBusy() == false)
{

// If user has old copy of Autodesk MapGuide Viewer
// display alert only
var ApiVersion = map.getApiVersion();
if (ApiVersion < 6.0)
{

alert("This control uses the latest technology in the\n
Autodesk MapGuide Viewer API. Please \n
download the latest Autodesk MapGuide Viewer from
the Autodesk MapGuide\n
Web site (www.autodesk.com/mapguideviewerdownload).");

}
// If user has recent copy of Autodesk MapGuide Viewer (API version 6.0
// or greater)...
else
{

// Assign array of possible drop-down list options
// to selValue variable; then assign name of selected
// list item to 'temp' variable ('Selection' is the
// HTML form, 'Status' is the 'status:' drop-down list)
var selValue = document.Selection.Status.options;
for (var i = 0; i < selValue.length; i++)
{

if (selValue[i].selected)
{

var temp = selValue[i].value;
}

}
// If user selected 'Show All', assign text string to
// whereClause1 varible

Municipal Application Example Code (continued)
148 | Chapter 7 Applications

if (temp == 'showAll')
{

var whereClause1 = "Status is not null";
}
// If user selected any other drop-down item, assign
// whereClause1 the string "Status=" plus the list item name
// (i.e., "Status='New'" or "Status='Old'")
else
{

var whereClause1 = "Status='" + temp + "'";
}

// Assign array of possible drop-down list options
// to selValue variable; then assign name of selected
// list item to 'temp2' variable ('Selection' is the
// HTML form, 'myDate' is the 'date:' drop-down list)
var selValue = document.Selection.myDate.options;
for (var i=0; i < selValue.length; i++)
{

if (selValue[i].selected)
{

var temp2 = selValue[i].value;
}

}
// The temp2 variable now represents user's selection -- use
// it to assign appropriate date-related SQL statement to the
// whereClause2 variable (date is generated on the server
// by Coldfusion, then sent to the browser as text)
if (temp2 == 'today')
{

whereClause2 =
"ReportDate <= #04/01/99# AND ReportDate >= #04/01/99#"

}
else if (temp2 == 'last2days')
{

whereClause2 =
"ReportDate <= #04/01/99# AND ReportDate >= #03/30/99#"

}
else if (temp2 == 'last7days')
{

whereClause2 =
"ReportDate <= #04/01/99# AND ReportDate >= #03/25/99#"

}
else if (temp2 == 'last15days')
{

whereClause2 =
"ReportDate <= #04/01/99# AND ReportDate >= #03/17/99#"

}
else if (temp2 == 'last30days')

Municipal Application Example Code (continued)
Municipal Application | 149

{
whereClause2 =

"ReportDate <= #04/01/99# AND ReportDate >= #03/02/99#"
}
else
{

whereClause2 = "ReportDate is not null";
}

// Combine the two SQL statements into one
whereClause = ((whereClause1) + " AND " + (whereClause2));

// Create an object representing the database setup for
// the 'Incidents' layer, then assign that object to
// a variable called 'mapDatabaseSetup'
var mapLayer = map.getMapLayer("Incidents");
var mapLayerSetup = mapLayer.getLayerSetup();
var mapDatabaseSetup = mapLayerSetup.getDatabaseSetup();

// Run SQL statement you created on the database linked
// to the 'Incidents' layer; then refresh the map, causing
// the items you queried to display in the map.
mapDatabaseSetup.setWhereClause(whereClause);
map.refresh();

}
}

}
// =-= //
// Function: pageSetup()
// Description: Displays the page setup dialog (called by
// the 'Print Setup' button, under 'Print Map')
// Arguments: none
// Returns: nothing
// =-= //
function pageSetup()
{

map = getMap(); // Get instance of MGMap

// If Autodesk MapGuide Viewer is not busy, display Page Setup dialog;
// otherwise display alert
if (map.isBusy() == false)

map.pageSetupDlg();
else

alert("The Autodesk MapGuide Viewer is busy. Please try again
in a few seconds.");

}

// =-= //
// Function printMap()

Municipal Application Example Code (continued)
150 | Chapter 7 Applications

// Description: Displays Print dialog (called by the
// 'Print' button, under 'Print Map')
// Arguments: none
// Returns: nothing
// =-= //
function printMap()
{

map = getMap(); // Get instance of MGMap

// If Autodesk MapGuide Viewer is not busy, display Print dialog;
// otherwise display alert
if (map.isBusy() == false)

map.printDlg();
else

alert("The Autodesk MapGuide Viewer is busy. Please try again in a few
seconds.");
}

//-->
</SCRIPT>

<-! Rest of page is straight HTML, with the exception of FORM
elements that call the JavaScript functions defined above. ->
</HEAD>
<BODY BGCOLOR="#CCCC99">
<-! Remainder of page is FORM containing a nested table ->
<FORM NAME="Selection">

<-! Begin table 1 ->
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0 WIDTH=100%>
<TR>
<TD VALIGN=top width=100%>

<-! Begin table 2 ->
<TABLE CELLPADDING=2 CELLSPACING=3 BORDER=0 WIDTH=100%>
<TR>
<TD BGCOLOR="#FFFFFF" VALIGN=MIDDLE ALIGN=CENTER>

</TD>
</TR>
</TABLE>
<-! End table 2 ->

<-! Begin table 3 ->
<TABLE CELLPADDING=2 CELLSPACING=3 BORDER=0 WIDTH=100%>
<TR>
<TD VALIGN=MIDDLE ALIGN=left BGCOLOR="#9c9c63">
<IMG SRC="MENU/qt.gif"

WIDTH=21 HEIGHT=29 BORDER=0 align=right>

Municipal Application Example Code (continued)
Municipal Application | 151

</TD>
</TR>
<TR>
<TD VALIGN=MIDDLE ALIGN=CENTER>

<-! Begin table 4 ->
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>
<TD>

</TD>
<TD>
<IMG SRC="MENU/ON.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
<TD>
<IMG SRC="MENU/OFF.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
</TR>
</TABLE>
<-! End table 4 ->

</TD>
</TR>
</TABLE>
<-! End table 3 ->

<-! Begin table 5->
<TABLE CELLPADDING=2 CELLSPACING=3 BORDER=0 WIDTH=100%>
<TR>
<TD VALIGN=MIDDLE BGCOLOR="#9c9c63">
<IMG SRC="MENU/qs.gif"

WIDTH=21 HEIGHT=18 BORDER=0 ALIGN=right>

</TD>
</TR>
<TR>
<TD VALIGN=MIDDLE ALIGN=CENTER>

<-! Begin table 6 ->
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>
<TD>

</TD>
<TD>
<IMG SRC="MENU/ON.gif"

Municipal Application Example Code (continued)
152 | Chapter 7 Applications

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
<TD>
<IMG SRC="MENU/OFF.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
</TR>
</TABLE>
<-! End table 6 ->

<-! Begin table 7 ->
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>
<TD>

</TD>
<TD>
<IMG SRC="MENU/ON.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
<TD>
<IMG SRC="MENU/OFF.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
</TR>
</TABLE>
<-! End table 7 ->

<-! Begin table 8 ->
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>
<TD>

</TD>
<TD>
<IMG SRC="MENU/ON.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
<TD>
<IMG SRC="MENU/OFF.gif"

WIDTH=30 HEIGHT=21 BORDER=0>

</TD>
</TR>
</TABLE>
<-! End table 8 ->

</TD>
</TR>
</TABLE>

Municipal Application Example Code (continued)
Municipal Application | 153

<-! End table 5 ->

<-! Begin table 9 ->
<TABLE CELLPADDING=2 CELLSPACING=3 BORDER=0 WIDTH=100%>
<TR>
<TD BGCOLOR="#9c9c63">
<IMG SRC="MENU/qt.gif"

WIDTH=21 HEIGHT=29 BORDER=0 align=right>

</TD>
</TR>
<TR>
<TD VALIGN=MIDDLE ALIGN=CENTER>
<IMG SRC="menu/diginc.gif"

WIDTH=107 HEIGHT=19 BORDER=0>
<IMG SRC="MENU/reporter.gif"

WIDTH=107 HEIGHT=19 BORDER=0>
</TD>
</TR>
</TABLE>
<-! End table 9 ->

<-! Begin table 10 ->
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR>
<TD COLSPAN="1" ALIGN="CENTER"><IMG SRC="menu/b_date.gif"

WIDTH=27 HEIGHT=12 ALT="" BORDER="0"></TD>
<TD>
<SELECT NAME="myDate" SIZE="1" onChange="showIncidents();">

<OPTION VALUE="showAll">Show all
<OPTION VALUE="today">Today
<OPTION VALUE="last2days">Last 2 days
<OPTION VALUE="last7days">Last 7 days
<OPTION VALUE="last15days">Last 15 days
<OPTION VALUE="last30days">Last 30 days

</SELECT>
</TD>
</TR>
<TR>
<TD>
<IMG SRC="menu/b_status.gif" WIDTH=36 HEIGHT=10 ALT=""

BORDER="0"></TD>
<TD COLSPAN="2">
<SELECT NAME="Status" SIZE="1" onChange="showIncidents();">

<OPTION VALUE="showAll">Show all
<OPTION VALUE="New">New
<OPTION VALUE="Open">Open

</SELECT>
</TD>

Municipal Application Example Code (continued)
154 | Chapter 7 Applications

</TR>
</TABLE>
<-! End table 10 ->

<-! Begin table 11 ->
<TABLE CELLPADDING=2 CELLSPACING=3 BORDER=0 WIDTH=100%>
<TR>
<TD BGCOLOR="#9c9c63">
<IMG SRC="MENU/qs.gif"

WIDTH=21 HEIGHT=18 BORDER=0 align=right>

</TD>
</TR>
<TR>
<TD VALIGN=MIDDLE ALIGN=CENTER>
<IMG SRC="MENU/prnsetup.gif"

WIDTH=107 HEIGHT=19 BORDER=0>

<IMG SRC="MENU/print.gif"

WIDTH=107 HEIGHT=19 BORDER=0>

</TD>
</TR>
</TABLE>

<-! End table 11 ->

</TD>
</TR>
</TABLE>
<-! End table 1->

</FORM>
</BODY>
</HTML>

Municipal Application Example Code (continued)
Municipal Application | 155

Facility Management Application

The Facility Management application demonstrates how you can create a
Web-based facility management application to manage and maintain
various facilities. Its layout is similar to the Municipal Application, but it has
more advanced navigation controls at the right of the window. It also allows
you to select features in various ways, generate reports, and even search for
an employee and update his or her information.

Facility Management application
156 | Chapter 7 Applications

Facilities Management Application Example
Code

Following is the source code for the controls. Additional comments have
been added to the code to give you a better idea of how the scripting works.
To view the source code for the other frames in this application, go to the
Demos and Customers section of the Autodesk MapGuide Web site at
www.autodesk.com/mapguidedemo, click Interactive Demos, and then click
the Facility Management application. When it is loaded, you can use your
browser’s View Source command to view the complete code behind the page.

Facilities Management Application Example Code

<HTML>
<HEAD>
<TITLE>FM</TITLE>
<SCRIPT LANGUAGE = "JavaScript">
<!--
// Get full browser name and assign it to tempName variable;
// then assign first 8 letters of tempName to browserName variable
var tempName = navigator.appName;
var browserName = tempName.substring(0,8);

// Map object variable, to be used later
var map;

// Set browserId variable: '1' for netscape, '2' for IE, else '0'
if (browserName == 'Netscape')

var browserId = 1;
else if (browserName == 'Microsof') // just first 8 letters...

browserId=2;
else

browserId = 0;

// =-= //
// Function: getMap()
// Description: Get appropriate map object for IE or Netscape
// **Same concept as getMap() **
// Arguments: none
// Returns: map object
// =-= //
function getMap()
{

// Get appropriate MGMap object; type depends on browserId value
if (browserId == 1)

map = top.main.document.embeds[0]; // Netscape map object
else if (browserId == 2)

map = top.main.document.map; // IE map object
Facility Management Application | 157

else
map = null; // none if other browser

return map; //return map object
}

// =-= //
// Function: Pan(direction)
// Description: pans in the specified direction
// Arguments: direction
// Return: nothing
// =-= //
function Pan(direction)
{

// Get MGMap object
var map = getMap();
map.setAutoRefresh(false);
// Get Width or Height in meters
var delta;
var scrollfactor = 1;
scrollfactor = document.Selection.factor.value;
scrollfactor = parseInt(scrollfactor);
if (isNaN (scrollfactor) || (scrollfactor < 1)) {

alert("Enter a positive number as the scrolling factor.");
}
else
{

if (direction == 'Up' | direction == 'Down' | direction ==
'Left' | direction == 'Right' | direction == 'Ul' | direction
== 'Ur' | direction == 'Ld' | direction == 'Rd')
delta = map.getWidth("M");
delta = (scrollfactor/10) * delta;

// Compute center point of map in Mapping Coordinate System (MCS)
var xyPt = map.lonLatToMcs(map.getLon(), map.getLat());
// Convert delta from Meters to MCS units.
var MCStoMeters = map.getMCSScaleFactor();
delta = delta / MCStoMeters;
// Adjust by width / height of the map
if (direction == 'Left') {

xyPt.setX(xyPt.getX() - delta)
}
if (direction == 'Right') {

xyPt.setX(xyPt.getX() + delta)
}
if (direction == 'Up') {

xyPt.setY(xyPt.getY() + delta)
}
if (direction == 'Ul') {

xyPt.setX(xyPt.getX() - delta)

Facilities Management Application Example Code (continued)
158 | Chapter 7 Applications

xyPt.setY(xyPt.getY() + delta)
}
if (direction == 'Ur') {

xyPt.setX(xyPt.getX() + delta)
xyPt.setY(xyPt.getY() + delta)

}
if (direction == 'Down') {

xyPt.setY(xyPt.getY() - delta)
}
if (direction == 'Ld') {

xyPt.setX(xyPt.getX() - delta)
xyPt.setY(xyPt.getY() - delta)

}
if (direction == 'Rd') {

xyPt.setX(xyPt.getX() + delta)
xyPt.setY(xyPt.getY() - delta)

}
// Zoom to the new location
myScale = map.getScale();
map.zoomScale(xyPt.getY(), xyPt.getX(), myScale);
map.setAutoRefresh(true);
map.refresh();

}//ends panning
}
// =-= //
// Function: GoToOrig(lat, lon)
// Description: Zooms to the lat lon specified with a width of 400 ft //
Arguments: lat, lon
// Returns: nothing
// =-= //
function GoToOrig(lat, lon){

var map = getMap();
map.zoomWidth(lat, lon, 400, "FT");

}

// =-= //
// Function: reportsDlg() +
// Description: shows the reports dialog for generating reports +
// Arguments: none +
// Return: none +
+++*/
function reportsDlg(){

var map = getMap();
var sel = map.getSelection();
var mapLayer = map.getMapLayer("Offices");

if ((sel.getNumObjects() < 1) || (mapLayer.isVisible() == false)){
alert("You must select an office first.");

}
else{

Facilities Management Application Example Code (continued)
Facility Management Application | 159

map.viewReportsDlg();
}

}

/*+++
+ Function: zoom(type) +
+ Description: general use of zoom functions +
+ Arguments: type string +
+ Return: null +
+++*/
function zoom(type)
{

var map = getMap(); //get MGMap
if (map.isBusy() == false)
{

if (type == 'Scale')
map.zoomScaleDlg();

else
map.zoomWidthDlg();

}
else

alert("The Autodesk MapGuide Viewer is busy ... please\n
try again in a few seconds");

}

/*+++
+ Function: selMapObj() +
+ Description: select by object, uses the Select Map Objects dialog +
+ Arguments: none +
+ Return: none +
+++*/
function selMapObj(){

var map = getMap();
map.selectMapObjectsDlg();

}

/*+++
+ Function: selRadiusMode() +
+ Description: changes the selection mode to select by radius +
+ Arguments: none +
+ Return: none +
+++*/
function selRadiusMode(){

var map = getMap();
map.selectRadiusMode();

}

/*+++

Facilities Management Application Example Code (continued)
160 | Chapter 7 Applications

+ Function: ObjSelChanged() +
+ Description: on change of selection, highlight room selected +
+ Arguments: none +
+ Return: none +
+++*/
function ObjSelChanged()
{

// Get MGMap object
var map = getMap();

if (map.isBusy() == false){
var selOptions = document.Selection.roomnum.options;

var collection = map.createObject("MGCollection");
var sel = map.getSelection();
var mapLayer = map.getMapLayer("Offices");
// For each item selected in the list box, get the corresponding
// object from the map. Keep track of them in a vector
for (var i=0; i < selOptions.length; i++) {

if (selOptions[i].selected){
var obj = mapLayer.getMapObject(selOptions[i].value);

if (obj != null) {
collection.add(obj);
}

}
}
sel.clear();
if (collection.size() > 0){
sel.addObjectsEx(collection, false);
}

var zoomCheck = document.Selection.ZoomOption.checked;
if (zoomCheck == true){

map.zoomSelected();
}

}
}

/*+++
+ Function: showOccupancy() +
+ Description: on change of selection, show occupancy type +
+ Arguments: none +
+ Return: none +
+++*/
function showOccupancy()
{

// Get MGMap object
var map = getMap();

if (map.isBusy() == false){
var selValue = document.Selection.Status.options;

for (var i=0; i < selValue.length; i++) {

Facilities Management Application Example Code (continued)
Facility Management Application | 161

if (selValue[i].selected){
var temp = selValue[i].value;
}

}
if (temp == 'showAll'){

var whereClause = "Space_Status is not null";
}
else{

var whereClause = "Space_Status='"+temp+"'";
}

var mapLayer = map.getMapLayer("Offices");
mapLayer.setSQLWhere(whereClause);
map.refresh();

}
}

/*+++
+ Function resetForm() +
+ Description: resets the values in the form to the default values +
+ Arguments: none +
+ Return: none +
++*/
function resetForm(){

document.Selection.reset();
}

/*+++
+ Function openSearchWind() +
+ Description: used to launch the search popup window +
+ Arguments: none +
+ Return: none +
++*/
function openSearchWind(){

var FirstName = document.Selection.FirstName.value;
var LastName = document.Selection.LastName.value;
var RoomSelected;
var Count = 0;

var selOptions = document.Selection.roomnum.options;
for (var i=0; i < selOptions.length; i++) {

if (selOptions[i].selected){
RoomSelected = selOptions[i].value
Count = Count + 1;
}

}
if ((FirstName.length == 0) && (LastName.length == 0) && (Count < 1)){

alert("Must enter a value for the first name or last name field. \n
Or, select a room before continuing.");

}

Facilities Management Application Example Code (continued)
162 | Chapter 7 Applications

else{
SearchWindow = window.open("Search.cfm?FirstName="

+FirstName+"&LastName="+LastName+ "&Room="+RoomSelected,
"SearchWindow","toolbar=no,width=350,height=205,directories=no,
status=no,scrollbars=no,resize=yes,menubar=no")

}
}

//-->
</SCRIPT>
</HEAD>

Facilities Management Application Example Code (continued)
Facility Management Application | 163

DWG Filtering Application

This example demonstrates filtering Autodesk DWG layers and selecting map
features. Autodesk DWG is a worldwide standard across vertical industries,
such as architectural design, and facilities planning and maintenance. For a
working version of this application, choose Help ➤ Contents ➤ Examples
Advanced ➤ DWG Filtering Example in the Autodesk MapGuide Viewer API Help.

As shown in the following illustration, the list box to the right of the map
shows the DWG filters that can be applied to an architectural map of a floor
plan. When a user selects one or more filters from the list box, the corre-
sponding Autodesk DWG layer(s) is displayed on the map. The user can also
select one or more features on the map and display properties, including
names and keys, and DWG layer properties for the current map layer.

DWG Filtering application
164 | Chapter 7 Applications

Understanding Layers in Autodesk MapGuide

When working with DWG data especially, it is important to understand the
difference between Autodesk DWG layers, Autodesk MapGuide map layers,
and Autodesk DWG map layers. These are not the same and are defined as
follows:

Changing Map Layer Data Source Properties

When using Autodesk MapGuide Viewer API methods that set Autodesk
MapGuide map layer data source properties, including those for Autodesk
DWG data, keep in mind that the changes you make can affect the validity
of other data source properties for that layer. For example, if you changed the
DWG data source using the MGDwgDataSources.setDataSource method
(or the MGDwgDataSources.DataSource property), this change could
make existing values for other properties (such as the Autodesk DWG file)
invalid since they might not exist in the new data source.

Layer Type Definition

Autodesk DWG layer A single layer within an Autodesk drawing file
(Autodesk DWG).

Autodesk MapGuide map layer A single map layer defined within an Autodesk
MapGuide map window file (MWF). There can
be several types of Autodesk MapGuide map
layers, including ones sourced from SDF, SHP,
DWG, and so on.

Autodesk DWG map layer A single Autodesk MapGuide map layer that is
sourced from an Autodesk DWG or Autodesk
Map project drawing.
DWG Filtering Application | 165

DWG Filtering Application Example Code

This example illustrates some basic tasks an application can perform when
working with DWG data. It primarily focuses on setting DWG filters and
getting DWG data, but it can easily be modified to change other Autodesk
MapGuide map layer properties, such as the DWG file, the DWG data source,
and so on.

In this example, DWG processing is performed on a map with a single
Autodesk MapGuide map layer called Floor Plan. Processing is performed
by two functions: selChanged() and showProperties(). The operational
flow of these functions is described in the following sections. To see the full
source code for this example, choose Help ➤ Contents ➤ Examples Advanced
➤ Filter DWG Layers in the Autodesk MapGuide Viewer API Help. When the
application loads, click the view source link in the right frame.

Selection Changed Function (selChanged)

The following are excerpts from the selChanged() function. This function
is called when a user selects or deselects one or more DWG filters from a list
box displayed on the map page. This function sets the layer filter of the DWG
map layer to layers selected by the user. The basic operational flow of this
function is as follows:

1 Use the getMap function, the current map is assigned to the variable map.

2 Use the map.getMapLayer method to get the map’s single map layer
named Floor Plan. Assign the map layer to a variable called mapLayer.

3 Get the DWG data source object for the layer by first getting the layer
setup using mapLayer.getLayerSetup, and then using the layer setup
to get the DWG data sources object of the layer using
mapLayerSetup.getDwgDataSources.

4 Use map.createObject("MGCollection")to create a collection object
called mapDwgLayerFilters. This object will hold filters selected by the
user from the filters list box.

5 Iterate through list box selections and add each to the collection object
mapDwgLayerFilters.

6 Create a comma-delimited string named filterList containing selected
filters. Note that the setLayerFilter method used next expects a
comma-delimited string of filters.
166 | Chapter 7 Applications

7 Set the layer filter from the selected filter list using the
dwgMapLayerDataSource.setLayerFilter(filterList) method.

8 Refresh the map using the map.refresh method.

DWG Filtering Application selChanged Example Code

// Selection Changed Function
// Called whenever items are selected or deselected in the list box
function selChanged()
{

var map = getMap();
// Use the single map layer Floor Plan
var mapLayer = map.getMapLayer("Floor Plan");
// Get DWG data source object for the layer
var mapLayerSetup = mapLayer.getLayerSetup();
var dwgMapLayerDataSource = mapLayerSetup.getDwgDataSources();
// Create a collection object to hold filters selected fromlist box
var mapDwgLayerFilters = map.createObject("MGCollection");
// Iterate through list box selections and add each to the collection
var selOptions = document.forms[0].filters.options;
for (var i = 0; i < selOptions.length; i++)
{

if (selOptions[i].selected)
{

var selectedFilter = selOptions[i].value;
if (selectedFilter != null)

mapDwgLayerFilters.add(selectedFilter);
}

}
// Create comma-delimited string containing selected filters.
var filterList = "";
for (var i = 0; i < mapDwgLayerFilters.size(); i++)
{

var filter = mapDwgLayerFilters.item(i);
if (i == mapDwgLayerFilters.size() - 1)

filterList = filterList + filter;
else

filterList = filterList + filter + ", ";
}
// Set the layer filter from the selected filter list
dwgMapLayerDataSource.setLayerFilter(filterList);
map.refresh();

}

DWG Filtering Application | 167

Show Properties Function (showProperties)

The following are excerpts from the showProperties() function. This
function gets and displays properties of selected map features in a table in the
output frame of the Web page, including DWG properties associated with the
DWG map layer. The basic operational flow of this function is as follows:

1 Write JavaScript and style sheet selection code to output frame.

2 Write output table headings.

3 Get the map and selected features using the getMap function and the
map.getSelection, and sel.getMapObjectsEx(null) methods.

4 Iterate through the selected map features (map objects) and write the fea-
ture(s) properties to the output table. In this example, we get the feature
name and key using the MGMapObject.getName and getKey methods.

5 Get the layer name for current map feature. To do this, we first get the map
layer of the selected feature using the MGMapObject.getMapLayer
method. We then use the MGMapLayer.getName method.

6 Get the map layer and its DWG data source object. To do this we first get
the map layer using map.getMapLayer with the layer name, then get the
layer setup using mapLayer.getLayerSetup method. Then, we get the
DWG data sources object of the layer using
mapLayerSetup.getDwgDataSources.

7 Using MGDwgDataSources methods, we get the DWG properties of the
map layer, including getDataSource, getDwg, getKeyColumn,
getKeyColumnType, and getKeyTable.

8 Next, using the getLayerFilter method, we get the DWG layer filters
used to display the current map view, and indicate that if no filter was
applied if layerFilter is null.

9 Finally, we complete the table by listing the remaining DWG properties
using the MGDwgDataSources methods getNameColumn,
getNameTable, getUrlColumn, and getUrlTable.

DWG Filtering Application showProperties Example Code

// Show Properties Function
// Shows properties of the selected map feature(s), including DWG properties of
the layer
function showProperties()
{

// Write javascript and style sheet selection code to output frame
...

// Write table headings
parent.outputframe.document.write ("<TABLE BORDER=1 WIDTH='100%'>");
parent.outputframe.document.write ("<TR>");
168 | Chapter 7 Applications

parent.outputframe.document.write ("<TD>");
parent.outputframe.document.write ("<h3>Map Feature</h3>");
parent.outputframe.document.write ("</TD>");
...
parent.outputframe.document.write ("</TR>");

// Get the map and selected features
var map = getMap();
var sel = map.getSelection();
var mapObjects = sel.getMapObjectsEx(null);
// Write the feature(s) properties to the table
for (var i = 0; i < mapObjects.size(); i++)
{

parent.outputframe.document.write ("<TR>");
parent.outputframe.document.write ("<TD>");
parent.outputframe.document.write (mapObjects.item(i).getName());
parent.outputframe.document.write ("</TD>");
parent.outputframe.document.write ("<TD>");
parent.outputframe.document.write (mapObjects.item(i).getKey());
parent.outputframe.document.write ("</TD>");
// Get the layer name for current map feature
var layerName = mapObjects.item(i).getMapLayer().getName();
parent.outputframe.document.write ("<TD>");
parent.outputframe.document.write (layerName);
parent.outputframe.document.write ("</TD>");
// Get the map layer and its DWG data source object
var mapLayer = map.getMapLayer(layerName);
var mapLayerSetup = mapLayer.getLayerSetup();
var dwgMapLayerDataSource = mapLayerSetup.getDwgDataSources();
parent.outputframe.document.write ("<TD>");
parent.outputframe.document.write

(dwgMapLayerDataSource.getDataSource());
parent.outputframe.document.write ("</TD>");
parent.outputframe.document.write ("<TD>");
parent.outputframe.document.write (dwgMapLayerDataSource.getDwg());
parent.outputframe.document.write ("</TD>");
parent.outputframe.document.write ("<TD>");
parent.outputframe.document.write (dwgMapLayerDataSource.getKeyColumn());
parent.outputframe.document.write ("</TD>");
parent.outputframe.document.write ("<TD>>");
parent.outputframe.document.write

(dwgMapLayerDataSource.getKeyColumnType());
parent.outputframe.document.write ("</TD>");
parent.outputframe.document.write ("<TD>");
parent.outputframe.document.write (dwgMapLayerDataSource.getKeyTable());
parent.outputframe.document.write ("</TD>");
parent.outputframe.document.write ("<TD>");
// Get the DWG layer filters used to display the current map view.
// Indicate if no filter was applied.

DWG Filtering Application showProperties Example Code (continued)
DWG Filtering Application | 169

var layerFilter = dwgMapLayerDataSource.getLayerFilter();
if (layerFilter == "")

parent.outputframe.document.write ("No filter applied");
else

parent.outputframe.document.write (layerFilter);
parent.outputframe.document.write ("</TD>");
parent.outputframe.document.write ("<TD>");
parent.outputframe.document.write

(dwgMapLayerDataSource.getNameColumn());
parent.outputframe.document.write ("</TD>");
parent.outputframe.document.write ("<TD>");
parent.outputframe.document.write (dwgMapLayerDataSource.getNameTable());
parent.outputframe.document.write ("</TD>");
parent.outputframe.document.write ("<TD>");
parent.outputframe.document.write (dwgMapLayerDataSource.getUrlColumn());
parent.outputframe.document.write ("</TD>");
parent.outputframe.document.write ("<TD>");
parent.outputframe.document.write (dwgMapLayerDataSource.getUrlTable());
parent.outputframe.document.write ("</TD>");
parent.outputframe.document.write ("</TR>");

}
parent.outputframe.document.write ("</TABLE>");
parent.outputframe.document.write ("</CENTER>");
parent.outputframe.document.write ("</BODY>");
parent.outputframe.document.close();

}

DWG Filtering Application showProperties Example Code (continued)
170 | Chapter 7 Applications

SDF Component Toolkit Applications

This section presents example applications using the SDF Component Toolkit:
one Active Server Page (ASP) example and threeVisual Basic (VB) examples.

The SDF Component Toolkit is a set of COM objects for reading and writing
Spatial Data Files (SDFs), as well as their supporting Spatial Index Files (SIFs)
and Key Index Files (KIFs). The spatial data displayed in Autodesk MapGuide
maps (map features such as roads, countries, buildings, and so on) is
contained in SDFs. SDF data is indexed in SIFs and KIFs. You can access SDF
Component Toolkit objects in development environments such as C++,
Visual Basic, VBA, VBScript, Java, JScript, ASP, CGI, and ColdFusion.

For more information about the SDF Component Toolkit, refer to the SDF
Component Toolkit Help, a help file (SDFCOMTK.HLP) located in the \Help
directory in your SDF Component Toolkit directory.

Updating SDF Files—an ASP Example

You can use the SDF Component Toolkit to create server-side applications
that read and modify existing SDF files. These applications can interact with
client-side scripts, allowing for dynamic updates based on user input. For
example, you could create an application that lets users add polygon lot lines
or points of interest to a map from their browser.

You can use the SDF Component Toolkit to add points, polylines, or poly-
gons to an SDF file when the user clicks the map. Note that Autodesk
MapGuide contains a similar functionality called redlining. This means that
users can add features to the map without using the SDF Component Toolkit
(see “Custom Redlining Application” on page 136). However, the difference
between the redlining functionality and the example in this section is that
redlining changes are saved to the MWF on the user’s computer, whereas the
example in this section updates the data source for the map. With redlining,
only the user sees the changes unless that MWF is then posted to the server.
With the following SDF example, any map that uses the SDF file as its data
source will display the new points.
SDF Component Toolkit Applications | 171

This example is called “Points of Interest.” It uses Active Server Pages (ASP) and
SDF Component Toolkit commands to allow users to add points of interest to
the map, which will also be added to the corresponding SDF data source.

SDF Component Toolkit Points of Interest application

Notice that the map is at the left and the controls are at the right. To add a
point, the user types a name for the point, clicks the Digitize button, clicks a
point on the map, and then clicks the Add button. The new point and its name
are added to poi.sdf, which is the SDF file on which the Points of Interest map
layer is based. Points are represented on the map as L-shaped symbols.

To find the point again, type the name of the point and click the Find button.
The map zooms to the point. To select the point, either click it or right-click
to display the popup menu, choose Select ➤ Select Map Features, and then
select the name of the point from the list. If the name does not appear in the
list, zoom out or click the Zoom Extents button to zoom all the way out until
the point appears. To remove the point from the map, type the name of the
point and click the Remove button. The point is then deleted from poi.sdf.
172 | Chapter 7 Applications

The main page is called maps_poi.htm. It contains the following code, which
sets up the frames:

Notice that the frame at the left, which contains the map, is called mapFrame
and uses the page map.htm. The frame at the right, which contains the
controls, is called poiFrame and uses the poi.asp file. First, take a look at the
code for the map.htm file, which will perform the following tasks:

1 Embed the map.

2 Set up the event observers that pass information from the
onDigitizedPoint event to the appropriate function. You do this by
defining a VBScript function for use by Internet Explorer and embedding
the MapGuideObserver6.class file for use by Netscape.

3 Define a function that takes the point from the observers and updates the
text boxes with the point’s coordinates.

maps_poi.htm Example Code

<HTML>
<HEAD>
<TITLE>Points of Interest Sample</TITLE>
</HEAD>
<FRAMESET COLS="75%,*" FRAMESPACING=0>
<FRAME SRC="map.htm" NAME="mapFrame" SCROLLING=NO MARGINHEIGHT=0
MARGINWIDTH=0>
<FRAME SRC="poi.asp" NAME="poiFrame">
</FRAMESET>
</HTML>

map.htm Example Code

<HTML>
<HEAD>
<TITLE>Points of Interest Map</TITLE>
</HEAD>
<BODY>

<SCRIPT LANGUAGE="VBScript">
// Send onDigitizedPoint events from Autodesk MapGuide Viewer ActiveX Control
// to the event-handling function
Sub map_onDigitizedPoint(Map, Point)
onDigitizedPoint Map, Point
End Sub
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
// Determine browser...
bName = navigator.appName;
SDF Component Toolkit Applications | 173

bVer = parseInt(navigator.appVersion);

if (bName == "Netscape" && bVer >= 4)
ver = "n4";
else if (bName == "Microsoft Internet Explorer" && bVer >= 4)
ver = "e4";
else ver = "other";

// ...if Netscape, embed event observer
if (ver == "n4")
{
document.write("<APPLET CODE=\"MapGuideObserver6.class\"
WIDTH=2 HEIGHT=2 NAME=\"obs\" MAYSCRIPT>");
document.write("</APPLET>");
}

// Now create the event-handling function. The function updates the
// lat & lon text boxes with the coordinates of the point the user
// clicks. Note that the name of this function must be the same as
// the event name so that the MapGuideObserver6 observer can find it.
function onDigitizedPoint(map, point)
{

if (ver == "n4")
{
parent.poiFrame.document.pointForm.pointLat.value = point.getX();
parent.poiFrame.document.pointForm.pointLon.value = point.getY();
}
else
{
parent.poiFrame.pointForm.pointLat.value = point.getX();
parent.poiFrame.pointForm.pointLon.value = point.getY();
}
}
</SCRIPT>

//Embed the map with both the OBJECT tag and the EMBED tag so that //it can be
used by both browsers
<OBJECT ID="map" WIDTH="100%" HEIGHT="100%"
CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D">
<PARAM NAME="URL" VALUE="http://yourserver.com/maps/poi.mwf">
<PARAM NAME="Lat" VALUE="0">
<PARAM NAME="Lon" VALUE="0">
<PARAM NAME="MapScale" VALUE="0">
<PARAM NAME="MapWidth" VALUE="0">
<PARAM NAME="Units" VALUE="M">
<PARAM NAME="ToolBar" VALUE="On">
<PARAM NAME="StatusBar" VALUE="On">
<PARAM NAME="LayersViewWidth" VALUE="150">
<PARAM NAME="DefaultTarget" VALUE="">

map.htm Example Code (continued)
174 | Chapter 7 Applications

The map is now embedded, the event observers are set up, and the
onDigitizedPoint function is in place to update the Lat and Lon boxes
with the coordinates from the point the user clicks. The ASP code in
poi.asp, which drives the controls in the right-hand frame, sets up the
controls and the functions behind them. This is where you will see the SDF
Component Toolkit commands. Note the use of the ASP method
server.CreateObject throughout the code; for more information about
ASP, see “Summary of ASP Objects, Components, and Events” on page 110.

<PARAM NAME="ErrorTarget" VALUE="">
<PARAM NAME="ObjectLinkTarget" VALUE="">
<PARAM NAME="ReportTarget" VALUE="">
<PARAM NAME="URLList" VALUE="Off">
<PARAM NAME="URLListTarget" VALUE="">
<PARAM NAME="AutoLinkLayers" VALUE="">
<PARAM NAME="AutoLinkTarget" VALUE="">
<PARAM NAME="AutoLinkDelay" VALUE="20">
<!-- in actual source, EMBED tag is on a single line -->
<EMBED SRC="http://yourserver.com/maps/poi.mwf?URL=
http://yourserver.com/maps/poi.mwf&Lat=0&Lon=0&MaScale=0
&Width=0&Units=M&ToolBar=On&StatusBar=On&LayersViewWidth=150
&DefaultTarget=&ErrorTarget=&ObjectLinkTarget=&ReportTarget=
&URLList=Off&URLListTarget=&AutoLinkLayers=&AutoLinkTarget=
&AutoLinkDelay=20" NAME="map" WIDTH="100%" HEIGHT="100%">
</OBJECT>
</BODY>
</HTML>

poi.asp Example Code

<%@ LANGUAGE="JavaScript" %>
<HTML>
<HEAD>
<TITLE>Points of Interest</TITLE>
</HEAD>

<BODY BGCOLOR="#C0C0C0">
<%
// First, set up the variables
var op = Request.Form("op");// Operation being performed, hidden form field
var pointName = "";// Value of Name field on the form
var pointLat = "";// Value of the Lat field on the form
var pointLon = "";// Value of the Lon field on the form
var msgText = "";// Message text to display at bottom of page
var actionOp = "";// Action to perform after successful operation
var zoomToLat = 0.0;// Lat to zoom to, used for Find operation.
var zoomToLon = 0.0;// Lon to zoom to, used for Find operation.

map.htm Example Code (continued)
SDF Component Toolkit Applications | 175

// Now, use the SDF Component Toolkit commands to drive the controls.
// This code is all wrapped within an if statement that verifies
// whether a valid command (add, find, or remove) has been issued
// before it creates an instance of the SDF Component Toolkit.
if (op == "Add" || op == "Find" || op == "Remove")
{
pointName = Request.Form("pointName");

if (pointName != "")
{
// Create an instance of the SDF Component Toolkit
var sdfToolKit = Server.CreateObject("Autodesk.MgSdfToolkit.1");

// If the command is Add or Remove, open the SDF for read/write.
// If the command is Find, open the SDF as read-only.
if (op == "Add" || op == "Remove")
{
//Use the constants "32 | 2" to indicate sdfOpenUpdate and
//sdfOpenExisting. These constants open for read/write and
//report errors if the file doesn’t exist.
sdfToolKit.Open("c:\\sdf\\poi.sdf", 32 | 2, true);

if (op == "Add") //add the point
{
pointLat = parseFloat(Request.Form("pointLat"));
pointLon = parseFloat(Request.Form("pointLon"));

// Set up the variables for building the point. A point
// in the SDF Component Toolkit follows the object
// hierarchy (in shorthand) of
// object.geometry.segment.point.
// Proceed only if the lat and lon values are valid.
if (!isNaN(pointLat) && !isNaN(pointLon))
{
var sdfObject =
Server.CreateObject("Autodesk.MgSdfObject.1");
var sdfGeometry =
Server.CreateObject("Autodesk.MgSdfObjectGeometry.1");
var sdfSegment =
Server.CreateObject("Autodesk.MgSdfObjectGeometrySegment.1");
var sdfPoint =
Server.CreateObject("Autodesk.MgSdfDoublePoint.1");

// Now build the point into an SDF object. Use the text
// in the Name field for both the name and the key;
// leave the URL empty.
sdfPoint.SetCoordinates(pointLat, pointLon);
sdfSegment.Add(sdfPoint);
sdfGeometry.Add(sdfSegment);

poi.asp Example Code (continued)
176 | Chapter 7 Applications

sdfObject.SetGeometry(0, sdfGeometry);
sdfObject.Name = pointName;
sdfObject.Key = pointName;
sdfObject.Url = "";

// The object is built. Now add it to the SDF.
sdfToolKit.BeginUpdate();
sdfToolKit.AddObject(sdfObject);
sdfToolKit.EndUpdate();

clearVars();
actionOp = "UpdateMap";
msgText = "Point added, updating map.";
}
else // Invalid lat/lon values
msgText = "Lat and Lon floating point quantities must

be specified."
}
else //if not the Add command, remove the point
{
var sdfObject = findObject(sdfToolKit, pointName);

if (sdfObject != null)
{
sdfToolKit.BeginUpdate();
sdfToolKit.DeleteObject(sdfObject);
sdfToolKit.EndUpdate();

clearVars();
actionOp = "UpdateMap"; // Refreshes the map
msgText = "Point removed, updating map.";
}
else
msgText = "Point not found.";
}
}
//If it's the Find command, open the SDF as read-only by setting
//the second parameter to 1 (sdfOpenRead) instead of 2
//(sdfOpenUpdate).
else if (op == "Find")
{
var sdfObject = null;

sdfToolKit.Open("c:\\sdf\\poi.sdf", 1, true);
sdfObject = findObject(sdfToolKit, pointName);

if (sdfObject != null)
{
var sdfPoint = sdfObject.Geometry.GetAt(0).GetAt(0);

poi.asp Example Code (continued)
SDF Component Toolkit Applications | 177

zoomToLon = sdfPoint.X;
zoomToLat = sdfPoint.Y;
clearVars();
actionOp = "ZoomToPoint"; // Zooms to the point on the map
msgText = "Zooming to point.";
}
else
msgText = "Point not found.";
}
sdfToolKit.Close();
}
else
msgText = "A name must be specified."
}
else if (Request.Count > 0)
msgText = "Unrecognized command.";
%>

<%
function findObject(openSdf, objKey) // The actual search
{
var sdfObject = null;

openSdf.BeginKeyIndexSearch(objKey);
sdfObject = openSdf.SearchToNextObject();
openSdf.EndSearch();

return sdfObject;
}

function clearVars()
{
pointName = "";
pointLat = "";
pointLon = "";
op = "";
}
%>

// This next section creates the content of the frame.
<H2>Points of Interest</H2>
<HR>
<FORM METHOD="POST" NAME="pointForm" TARGET="_self"
ACTION="poi.asp">
<INPUT TYPE="hidden" NAME="op" VALUE="None">
<DIV ALIGN="left">
<P>
<LABEL FOR="fp1">Name
</LABEL>
<INPUT TYPE="text" NAME="pointName" VALUE="<%=pointName%>"

poi.asp Example Code (continued)
178 | Chapter 7 Applications

SIZE="20" maxlength="255" ID="fp1">
</P>
</DIV>
<DIV ALIGN="left">
<P>
<LABEL FOR="fp2">Latitude
</LABEL>
<INPUT TYPE="text" NAME="pointLat" VALUE="<%=pointLat%>"
SIZE="12" ID="fp2">
</P>
</DIV>
<DIV ALIGN="left">
<P>
<LABEL FOR="fp3">Longitude
</LABEL>
<INPUT TYPE="text" NAME="pointLon" VALUE="<%=pointLon%>"
SIZE="12" ID="fp3">
</P>
</DIV>
<P>
<INPUT TYPE="button" VALUE="Digitize" NAME="digitizePoint"
LANGUAGE="JavaScript" ONCLICK="digitizeIt()">
</P>
<HR>
<P>
<INPUT TYPE="button" WIDTH="50" VALUE="Add" NAME="addPoint"
WIDTH="50" LANGUAGE="JavaScript"
ONCLICK="pointForm.op.value='Add'; pointForm.submit()">
<INPUT TYPE="button" WIDTH="50" VALUE="Find" NAME="findPoint"
LANGUAGE="JavaScript"
ONCLICK="pointForm.op.value='Find'; pointForm.submit()">
<INPUT TYPE="button" WIDTH="50" VALUE="Remove"
NAME="removePoint" LANGUAGE="JavaScript"
ONCLICK="pointForm.op.value = 'Remove'; pointForm.submit()">
</P>
</FORM>
<HR>
<%=msgText%>

<SCRIPT LANGUAGE="JavaScript">
// Determine browser...
bName = navigator.appName;
bVer = parseInt(navigator.appVersion);

if (bName == "Netscape" && bVer >= 4)
ver = "n4";
else if (bName == "Microsoft Internet Explorer" && bVer >= 4)
ver = "e4";
else
ver = "other";

poi.asp Example Code (continued)
SDF Component Toolkit Applications | 179

function getMap()
{
if (ver == "n4")
return parent.mapFrame.document.map;
else
return parent.mapFrame.map;
}
// Following is the function called by the Digitize button. If the
// browser is Navigator, it will send the onDigitizedPoint event to
// the MapGuideObserver6.class observer (the obs variable). If the
// browser is Internet Explorer, it will know to look for an observer
// method with the same name as the event, which we defined with
// VBScript in map.htm.
function digitizeIt()
{
if (ver == "n4")
getMap().digitizePoint(parent.mapFrame.document.obs);
else
getMap().digitizePoint();
}

function updateMap() // Updates the map after an Add or Remove
{
getMap().getMapLayer("POI").setRebuild(true);
getMap().refresh();
}

function zoomToPoint() // Zooms to the point after a Find
{
getMap().zoomWidth(<%=zoomToLat%>, <%=zoomToLon%>, 1000, "Mi");
getMap().refresh();
}
</SCRIPT>

<%
//When the resulting HMTL loads in the browser, these last few lines //of ASP
code call updateMap() or zoomToPoint(), depending on the //operation performed
when the ASP was executed.

if (actionOp == "UpdateMap")
{
Response.Write("<SCRIPT LANGUAGE=\"JavaScript\">");
Response.Write("updateMap();");
Response.Write("</SCRIPT>");
}
else if (actionOp == "ZoomToPoint")
{
Response.Write("<SCRIPT LANGUAGE=\"JavaScript\">");
Response.Write("zoomToPoint();");

poi.asp Example Code (continued)
180 | Chapter 7 Applications

Once you understand the object hierarchy, using the SDF Component
Toolkit is very straightforward. This example used ASP, but you can apply
similar techniques using ColdFusion or another language. Please go to the
customer sites page at www.autodesk.com/mapguidedemo to see more appli-
cations and add your own applications to share with others.

Converting to an SDF File—a Visual Basic
Example

The ConvertSDF example shows how to implement a proprietary data
converter. This code accesses a text file that contains necessary coordinate
information and other attributes for SDF objects and creates an SDF file from
it. This example is written in Visual Basic.

Response.Write("</SCRIPT>");
}
%>

</BODY>
</HTML>

ConvertSDF Example Code

VERSION 6.00
Object = "{3B7C8863-D78F-101B-B9B5-04021C009402}#1.2#0"; "RICHTX32.OCX"
Object = "{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.2#0"; "comdlg32.ocx"
Begin VB.Form frmLab2

Caption = "Form1"
ClientHeight = 3360
ClientLeft = 48
ClientTop = 276
ClientWidth = 5820
LinkTopic = "Form1"
ScaleHeight = 3360
ScaleWidth = 5820
StartUpPosition = 3 'Windows Default
Begin VB.CommandButton btnDelete

Cancel = -1 'True
Caption = "Delete Feature"
Height = 288
Left = 4440
TabIndex = 7
Top = 1320
Width = 1212

End
Begin VB.CommandButton btnConvert

poi.asp Example Code (continued)
SDF Component Toolkit Applications | 181

Caption = "Convert"
Height = 288
Left = 4440
TabIndex = 6
Top = 960
Width = 1212

End
Begin VB.CommandButton btnBrowseTxt

Caption = "Browse"
Height = 288
Left = 4440
TabIndex = 5
Top = 120
Width = 1212

End
Begin VB.TextBox txtTxtName

Height = 288
Left = 120
TabIndex = 4
Text = "d:\work\mapguide\water.txt"
Top = 120
Width = 4212

End
Begin VB.CommandButton btnExit

Caption = "Exit"
Height = 288
Left = 4440
TabIndex = 3
Top = 3000
Width = 1212

End
Begin MSComDlg.CommonDialog cdOpen

Left = 4920
Top = 2520
_ExtentX = 677
_ExtentY = 677
_Version = 393216
CancelError = -1 'True
DialogTitle = "Open SDF File"
Filter = "SDF Files (*.sdf) | *.sdf"
FilterIndex = 1

End
Begin VB.TextBox txtSdfName

Height = 288
Left = 120
TabIndex = 2
Text = "d:\work\mapguide\water.sdf"
Top = 480
Width = 4212

ConvertSDF Example Code (continued)
182 | Chapter 7 Applications

End
Begin VB.CommandButton btnBrowseSdf

Caption = "Browse"
Height = 288
Left = 4440
TabIndex = 1
Top = 480
Width = 1212

End
Begin RichTextLib.RichTextBox txtMsg

Height = 2292
Left = 120
TabIndex = 0
Top = 960
Width = 4212
_ExtentX = 7430
_ExtentY = 4043
_Version = 393217
Enabled = -1 'True
ReadOnly = -1 'True
ScrollBars = 2
TextRTF = $"frmLab2.frx":0000
BeginProperty Font {0BE35203-8F91-11CE-9DE3-00AA004BB851}

Name = "Courier New"
Size = 7.8
Charset = 0
Weight = 400
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

EndProperty
End

End
Attribute VB_Name = "frmLab2"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

Private Sub btnBrowseSdf_Click()
On Error GoTo ErrHandler

cdOpen.Filter = "SDF Files (*.SDF)| *.SDF"
cdOpen.FilterIndex = 1
cdOpen.DialogTitle = "Save SDF File"
'Show the open dialog box
cdOpen.ShowSave
txtSdfName.Text = cdOpen.FileName

ConvertSDF Example Code (continued)
SDF Component Toolkit Applications | 183

ErrHandler:
'Cancel was selected
'Just exit after resetting errhandler
On Error GoTo 0

End Sub

Private Sub btnBrowseTxt_Click()
On Error GoTo ErrHandler

cdOpen.Filter = "Text Files (*.TXT)| *.TXT"
cdOpen.FilterIndex = 1
cdOpen.DialogTitle = "Open SDF File"

'Show the open dialog box
cdOpen.ShowOpen
txtTxtName.Text = cdOpen.FileName

ErrHandler:
'Cancel was selected
'Just exit after resetting errhandler
On Error GoTo 0

End Sub

Private Sub btnConvert_Click()
'Check if there is a file name in edit boxes
If (txtSdfName.Text = "") Or (txtTxtName.Text = "") Then

ShowMessage ("Select the TXT and SDF files first!")
Exit Sub

End If

Dim oTlkt As New SdfToolkit
Dim oObj As New SdfObject
Dim oGeom As New SdfObjectGeometry
Dim oSeg As New SdfObjectGeometrySegment
Dim oPnt As New SdfDoublePoint
Dim strMsg As String
Dim strObjType As String, strKey As String, strName As String, strUrl As

String, strCnt As String
Dim X As Double, Y As Double
Dim i As Long, j As Long

On Error GoTo ErrHandler

'Open the input text file
Open txtTxtName.Text For Input As #1
'Open the sdf file in read-only mode
oTlkt.Open txtSdfName.Text, sdfOpenUpdate Or sdfCreateAlways, True
'Indicate update process

ConvertSDF Example Code (continued)
184 | Chapter 7 Applications

oTlkt.BeginUpdate
j = 0
'Read from txt file till eof
Do While Not EOF(1)

'Get the feature data
Line Input #1, strObjType
Line Input #1, strKey 'Key
Line Input #1, strName 'Name
Line Input #1, strUrl 'Url
Line Input #1, strCnt 'Vertex count

'Read the geometry
For i = 1 To Val(strCnt)

Input #1, X
Input #1, Y
'Prepare a point feature
oPnt.SetCoordinates X, Y
'Add this point into the segment
oSeg.Add oPnt

Next i
'Now add this segment into the geometry
oGeom.Add oSeg
'Put this geometry into the feature
If strObjType = "POLYGON" Then

oObj.SetGeometry sdfPolygonObject, oGeom
ElseIf strObjType = "POLYLINE" Then

oObj.SetGeometry sdfPolylineObject, oGeom
ElseIf strObjType = "POINT" Then

oObj.SetGeometry sdfPointObject, oGeom
Else

ShowMessage "Unknown feature in input file."
End If

'Set the feature properties
oObj.Key = Trim(strKey)
oObj.Name = Trim(strName)
oObj.Url = Trim(strUrl)

'Add this feature to the SDF file
oTlkt.AddObject oObj
j = j + 1

'Clear the geometry before next use
oGeom.RemoveAll
oSeg.RemoveAll

Loop
'Wind up
oTlkt.EndUpdate
oTlkt.Close

ConvertSDF Example Code (continued)
SDF Component Toolkit Applications | 185

Close #1

ShowMessage txtTxtName.Text & " converted to " & txtSdfName.Text
ShowMessage "Total features converted: " & j
Exit Sub

ErrHandler:
'Display the error number/message
MsgBox Err.Number & " : " & Err.Description
'Reset the handler before exiting
On Error GoTo 0

End Sub

Private Sub btnDelete_Click()
'Check if there is a file name in edit box

If txtSdfName.Text = "" Then
ShowMessage ("Select an SDF file first!")
Exit Sub

End If

Dim Key As String

'Get the key from
Key = InputBox("Enter the key of the feature to be deleted: ", "Key Input",

"Lake")
If Key = "" Then

Exit Sub
End If

Dim oTlkt As New SdfToolkit
Dim oBox As SdfBoundingBox
Dim oObj As SdfObject
Dim strMsg As String
Dim i As Long
Dim objFound As Boolean

On Error GoTo ErrHandler

'Open the sdf file in read-only mode
oTlkt.Open txtSdfName.Text, sdfOpenUpdate Or sdfOpenExisting, True
'Begin spatial search for polylines
oTlkt.BeginKeyIndexSearch (Key)
'Get first feature having key
Set oObj = oTlkt.SearchToNextObject()
'End search
oTlkt.EndSearch

ConvertSDF Example Code (continued)
186 | Chapter 7 Applications

objFound = Not (oObj Is Nothing)
If Not (oObj Is Nothing) Then

ShowMessage "Following feature is deleted"
ShowMessage "Feature: " & i & " " & GetObjectTypeString(oObj.Type)
ShowMessage " Key : " & oObj.Key
ShowMessage " Name: " & oObj.Name
ShowMessage " Url : " & oObj.Url
'Delete this feature
oTlkt.BeginUpdate
oTlkt.DeleteObject oObj
oTlkt.EndUpdate

End If

'If we come here, feature with specified key was not found
If Not objFound Then

ShowMessage ("Feature with specified key not found.")
Else

ShowMessage ("Feature with key " & Key & " deleted.")
End If

oTlkt.Close

Exit Sub

ErrHandler:
'Display the error number/message
MsgBox Err.Number & " : " & Err.Description
'Reset the handler before exiting
On Error GoTo 0

End Sub

Private Sub btnExit_Click()
End

End Sub

Sub ShowMessage(Msg As String)

txtMsg.Text = txtMsg.Text & Msg & vbCrLf

End Sub

Function GetObjectTypeString(ObjType As SdfObjectType) As String
Select Case ObjType

Case sdfPointObject:
GetObjectTypeString = "POINT"

Case sdfPolygonObject:

ConvertSDF Example Code (continued)
SDF Component Toolkit Applications | 187

Getting SDF File Information—a Visual Basic
Example

The SDFInfo example code shows how to open and access an SDF file to
retrieve its information, such as precision, key length, bounding box, etc. It
also shows how to search for features within the SDF file using sequential
search, spatial search, and key-indexed search. This example is written in
Visual Basic.

GetObjectTypeString = "POLYGON"
Case sdfPolylineObject:

GetObjectTypeString = "POLYLINE"
Case sdfPolyPolylineObject:

GetObjectTypeString = "POLYPOLYLINE"
Case sdfPolyPolygonObject:

GetObjectTypeString = "POLYPOLYGON"
End Select

End Function

SDFInfo Example Code

VERSION 6.00
Object = "{3B7C8863-D78F-101B-B9B5-04021C009402}#1.2#0"; "RICHTX32.OCX"
Object = "{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.2#0"; "comdlg32.ocx"
Begin VB.Form frmLab1

Caption = "Form1"
ClientHeight = 3360
ClientLeft = 48
ClientTop = 276
ClientWidth = 5820
LinkTopic = "Form1"
ScaleHeight = 3360
ScaleWidth = 5820
StartUpPosition = 3 'Windows Default
Begin VB.CommandButton btnExit

Caption = "Exit"
Height = 288
Left = 4440
TabIndex = 7
Top = 3000
Width = 1212

End
Begin VB.CommandButton btnSrchKey

Caption = "Key Search"
Height = 288
Left = 4440

ConvertSDF Example Code (continued)
188 | Chapter 7 Applications

TabIndex = 6
Top = 1800
Width = 1212

End
Begin VB.CommandButton btnSrchSpat

Caption = "Spatial Search"
Height = 288
Left = 4440
TabIndex = 5
Top = 1440
Width = 1212

End
Begin VB.CommandButton btnSrchSeq

Caption = "Seq Search"
Height = 288
Left = 4440
TabIndex = 4
Top = 1080
Width = 1212

End
Begin VB.CommandButton btnShowInfo

Caption = "Show Info"
Height = 288
Left = 4440
TabIndex = 3
Top = 720
Width = 1212

End
Begin MSComDlg.CommonDialog cdOpen

Left = 4920
Top = 2280
_ExtentX = 677
_ExtentY = 677
_Version = 393216
CancelError = -1 'True
DialogTitle = "Open SDF File"
Filter = "SDF Files (*.sdf) | *.sdf"
FilterIndex = 1

End
Begin VB.TextBox txtSdfName

Height = 288
Left = 120
TabIndex = 2
Text = "d:\work\mapguide\redline.sdf"
Top = 120
Width = 4212

End
Begin VB.CommandButton btnBrowse

Caption = "Browse"

SDFInfo Example Code (continued)
SDF Component Toolkit Applications | 189

Height = 288
Left = 4440
TabIndex = 1
Top = 120
Width = 1212

End
Begin RichTextLib.RichTextBox txtMsg

Height = 2652
Left = 120
TabIndex = 0
Top = 600
Width = 4212
_ExtentX = 7430
_ExtentY = 4678
_Version = 393217
Enabled = -1 'True
ReadOnly = -1 'True
ScrollBars = 2
TextRTF = $"frmLab1.frx":0000
BeginProperty Font {0BE35203-8F91-11CE-9DE3-00AA004BB851}

Name = "Courier New"
Size = 7.8
Charset = 0
Weight = 400
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

EndProperty
End

End
Attribute VB_Name = "frmLab1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

Private Sub btnBrowse_Click()
On Error GoTo ErrHandler

'Show the open dialog box
cdOpen.ShowOpen
txtSdfName.Text = cdOpen.FileName

ErrHandler:
'Cancel was selected
'Just exit after resetting errhandler
On Error GoTo 0

End Sub

SDFInfo Example Code (continued)
190 | Chapter 7 Applications

Private Sub btnExit_Click()
End

End Sub

Private Sub btnShowInfo_Click()

'Check if there is a file name in edit box
If txtSdfName.Text = "" Then

ShowMessage ("Select an SDF file first!")
Exit Sub

End If

Dim oTlkt As New SdfToolkit
Dim oBox As SdfBoundingBox
Dim strMsg As String

On Error GoTo ErrHandler

'Open the sdf file in read-only mode
oTlkt.Open txtSdfName.Text, sdfOpenRead, True

'Get SDF name
strMsg = oTlkt.Name
ShowMessage "SDF File opened: " & strMsg

'Get description
strMsg = oTlkt.Description
ShowMessage "Description: " & strMsg

'Get precision
strMsg = oTlkt.Precision
ShowMessage "Precision: " & strMsg & " bit"

'Get key length
strMsg = oTlkt.MaxKeyLength
ShowMessage "Max Key length: " & strMsg

'Get version
strMsg = oTlkt.Version
ShowMessage "Version: " & strMsg

'Get extents
strMsg = "Min LAT: " & oTlkt.BoundingBox.minY & vbCrLf & _

"Min LON: " & oTlkt.BoundingBox.minX & vbCrLf & _
"Max LAT: " & oTlkt.BoundingBox.maxY & vbCrLf & _
"Max LON: " & oTlkt.BoundingBox.maxX

ShowMessage "SDF Extents: " & vbCrLf & strMsg

SDFInfo Example Code (continued)
SDF Component Toolkit Applications | 191

'Get total count of features
strMsg = oTlkt.TotalObjects
ShowMessage "Total features: " & strMsg

'Check for feature classes present in this sdf
ShowMessage "Contains Points: " & oTlkt.ContainsObjectClass(sdfPointClass)
ShowMessage "Contains Polylines: " &

oTlkt.ContainsObjectClass(sdfPolylineClass)
ShowMessage "Contains Polygons: " &

oTlkt.ContainsObjectClass(sdfPolygonClass)

'Close the toolkit
oTlkt.Close

Exit Sub

ErrHandler:
'Display the error number/message
MsgBox Err.Number & " : " & Err.Description
'Reset the handler before exiting
On Error GoTo 0

End Sub

Private Sub btnSrchKey_Click()
'Check if there is a file name in edit box

If txtSdfName.Text = "" Then
ShowMessage ("Select an SDF file first!")
Exit Sub

End If

Dim Key As String

'Get the key from
Key = InputBox("Enter the key of the feature: ", "Key Input",

"RedLine[144.111.8.96]")
If Key = "" Then

Exit Sub
End If

Dim oTlkt As New SdfToolkit
Dim oBox As SdfBoundingBox
Dim oObj As SdfObject
Dim strMsg As String
Dim i As Long
Dim objFound As Boolean

SDFInfo Example Code (continued)
192 | Chapter 7 Applications

On Error GoTo ErrHandler

'Open the sdf file in read-only mode
oTlkt.Open txtSdfName.Text, sdfOpenRead, True

'Begin spatial search for polylines
oTlkt.BeginKeyIndexSearch (Key)

'Get first feature
Set oObj = oTlkt.SearchToNextObject()
objFound = Not (oObj Is Nothing)
i = 1

Do While Not (oObj Is Nothing)
ShowMessage "Feature: " & i & " " & GetObjectTypeString(oObj.Type)
ShowMessage " Key : " & oObj.Key
ShowMessage " Name: " & oObj.Name
ShowMessage " Url : " & oObj.Url
Set oObj = oTlkt.SearchToNextObject()
i = i + 1
DoEvents

Loop

'If we come here, feature with specified key was not found
If Not objFound Then

ShowMessage ("Feature with specified key not found.")
Else

ShowMessage (i - 1 & " features with key " & Key & " found.")
End If

'Close the toolkit
oTlkt.EndSearch
oTlkt.Close

Exit Sub

ErrHandler:
'Display the error number/message
MsgBox Err.Number & " : " & Err.Description
'Reset the handler before exiting
On Error GoTo 0

End Sub

Private Sub btnSrchSeq_Click()
'Check if there is a file name in edit box

If txtSdfName.Text = "" Then
ShowMessage ("Select an SDF file first.")
Exit Sub

End If

SDFInfo Example Code (continued)
SDF Component Toolkit Applications | 193

Dim oTlkt As New SdfToolkit
Dim oObj As SdfObject
Dim strMsg As String
Dim i As Long

On Error GoTo ErrHandler

'Open the sdf file in read-only mode
oTlkt.Open txtSdfName.Text, sdfOpenRead, True

'Begin sequential search
oTlkt.BeginSequentialSearch

'Get first feature
Set oObj = oTlkt.SearchToNextObject()

i = 1
While Not (oObj Is Nothing)

ShowMessage "Feature: " & i & " " & GetObjectTypeString(oObj.Type)
ShowMessage " Key: " & oObj.Key
ShowMessage " Name: " & oObj.Name
ShowMessage " Url: " & oObj.Url
Set oObj = oTlkt.SearchToNextObject()
i = i + 1
DoEvents

Wend

'Close the toolkit
oTlkt.EndSearch
oTlkt.Close

Exit Sub

ErrHandler:
'Display the error number/message
MsgBox Err.Number & " : " & Err.Description
'Reset the handler before exiting
On Error GoTo 0

End Sub

Private Sub btnSrchSpat_Click()
'Check if there is a file name in edit box

If txtSdfName.Text = "" Then
ShowMessage ("Select an SDF file first!")
Exit Sub

End If

SDFInfo Example Code (continued)
194 | Chapter 7 Applications

Dim oTlkt As New SdfToolkit
Dim oBox As SdfBoundingBox
Dim oObj As SdfObject
Dim strMsg As String
Dim i As Long

On Error GoTo ErrHandler

'Open the sdf file in read-only mode
oTlkt.Open txtSdfName.Text, sdfOpenRead, True

'Get the SDF extents
Set oBox = oTlkt.BoundingBox

'Begin spatial search for polylines
oTlkt.BeginSpatialIndexSearch sdfPolylineClass, oBox

'Get first feature
Set oObj = oTlkt.SearchToNextObject()

i = 1

While Not (oObj Is Nothing)
ShowMessage "Feature: " & i & " " & GetObjectTypeString(oObj.Type)
ShowMessage " Key: " & oObj.Key
ShowMessage " Name: " & oObj.Name
ShowMessage " Url: " & oObj.Url
Set oObj = oTlkt.SearchToNextObject()
i = i + 1
DoEvents

Wend

'Close the toolkit
oTlkt.EndSearch
oTlkt.Close

Exit Sub
ErrHandler:

'Display the error number/message
MsgBox Err.Number & " : " & Err.Description
'Reset the handler before exiting
On Error GoTo 0

End Sub

Sub ShowMessage(Msg As String)

SDFInfo Example Code (continued)
SDF Component Toolkit Applications | 195

Copying an SDF File—a Visual Basic Example

The CopySDF example shows how to open an existing SDF file and write its
features to a new SDF file. It is written in Visual Basic.

txtMsg.Text = txtMsg.Text & Msg & vbCrLf

End Sub

Function GetObjectTypeString(ObjType As SdfObjectType) As String
Select Case ObjType

Case sdfPointObject:
GetObjectTypeString = "POINT"

Case sdfPolygonObject:
GetObjectTypeString = "POLYGON"

Case sdfPolylineObject:
GetObjectTypeString = "POLYLINE"

Case sdfPolyPolylineObject:
GetObjectTypeString = "POLYPOLYLINE"

Case sdfPolyPolygonObject:
GetObjectTypeString = "POLYPOLYGON"

End Select

End Function

CopySDF Example Code

VERSION 6.00
Object = "{3B7C8863-D78F-101B-B9B5-04021C009402}#1.2#0"; "RICHTX32.OCX"
Object = "{F9043C88-F6F2-101A-A3C9-08002B2F49FB}#1.2#0"; "comdlg32.ocx"
Begin VB.Form frmLab2

Caption = "Form1"
ClientHeight = 3360
ClientLeft = 48
ClientTop = 276
ClientWidth = 5820
LinkTopic = "Form1"
ScaleHeight = 3360
ScaleWidth = 5820
StartUpPosition = 3 'Windows Default
Begin VB.CommandButton btnCopy

Caption = "Copy"
Height = 288
Left = 4440
TabIndex = 6
Top = 960
Width = 1212

SDFInfo Example Code (continued)
196 | Chapter 7 Applications

End
Begin VB.CommandButton btnBrowseInSdf

Caption = "Browse"
Height = 288
Left = 4440
TabIndex = 5
Top = 120
Width = 1212

End
Begin VB.TextBox sdfInName

Height = 288
Left = 120
TabIndex = 4
Text = "d:\work\mapguide\redline.sdf"
Top = 120
Width = 4212

End
Begin VB.CommandButton btnExit

Caption = "Exit"
Height = 288
Left = 4440
TabIndex = 3
Top = 3000
Width = 1212

End
Begin MSComDlg.CommonDialog cdOpen

Left = 4920
Top = 2520
_ExtentX = 677
_ExtentY = 677
_Version = 393216
CancelError = -1 'True
DialogTitle = "Open SDF File"
Filter = "SDF Files (*.sdf) | *.sdf"
FilterIndex = 1

End
Begin VB.TextBox sdfOutName

Height = 288
Left = 120
TabIndex = 2
Text = "d:\work\mapguide\redline1.sdf"
Top = 480
Width = 4212

End
Begin VB.CommandButton btnBrowseOutSdf

Caption = "Browse"
Height = 288
Left = 4440
TabIndex = 1

CopySDF Example Code (continued)
SDF Component Toolkit Applications | 197

Top = 480
Width = 1212

End
Begin RichTextLib.RichTextBox txtMsg

Height = 2292
Left = 120
TabIndex = 0
Top = 960
Width = 4212
_ExtentX = 7430
_ExtentY = 4043
_Version = 393217
Enabled = -1 'True
ReadOnly = -1 'True
ScrollBars = 2
TextRTF = $"frmLab3.frx":0000
BeginProperty Font {0BE35203-8F91-11CE-9DE3-00AA004BB851}

Name = "Courier New"
Size = 7.8
Charset = 0
Weight = 400
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False

EndProperty
End

End
Attribute VB_Name = "frmLab2"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit

Private Sub btnBrowseInSdf_Click()
On Error GoTo ErrHandler

cdOpen.Filter = "Text Files (*.SDF)| *.SDF"
cdOpen.FilterIndex = 1
cdOpen.DialogTitle = "Open SDF File"

'Show the open dialog box
cdOpen.ShowOpen
sdfInName.Text = cdOpen.FileName

ErrHandler:
'Cancel was selected
'Just exit after resetting errhandler
On Error GoTo 0

CopySDF Example Code (continued)
198 | Chapter 7 Applications

End Sub

Private Sub btnBrowseOutSdf_Click()
On Error GoTo ErrHandler

cdOpen.Filter = "SDF Files (*.SDF)| *.SDF"
cdOpen.FilterIndex = 1
cdOpen.DialogTitle = "Save SDF File"

'Show the open dialog box
cdOpen.ShowSave
sdfOutName.Text = cdOpen.FileName

ErrHandler:
'Cancel was selected
'Just exit after resetting errhandler
On Error GoTo 0

End Sub

Private Sub btnCopy_Click()
Dim msg As String

'Check for filenames
If (sdfInName.Text = "") Or (sdfOutName.Text = "") Then

ShowMessage "You must select filenames first.'"
Exit Sub

End If

Dim oTlktIn As New SdfToolkit
Dim oTlktOut As New SdfToolkit
Dim oObj As SdfObject
Dim oBox As New SdfBoundingBox
Dim xMin As Double, yMin As Double, xMax As Double, yMax As Double
Dim i As Long

On Error GoTo ErrHandler

'Open the input sdf file in readonly mode
oTlktIn.Open sdfInName, sdfOpenRead, True
'Open the output sdf file for write/append mode
oTlktOut.Open sdfOutName, sdfOpenUpdate Or sdfOpenAlways, True

'Get insdf's extents
Set oBox = oTlktIn.BoundingBox
Debug.Print oBox.MinX, oBox.MinY, oBox.MaxX, oBox.MaxY

'Set up search area that is 1/3 of input sdf
xMin = oBox.MinX + Abs((Abs(oBox.MaxX) - Abs(oBox.MinX)) / 3)
xMax = oBox.MaxX - Abs((Abs(oBox.MaxX) - Abs(oBox.MinX)) / 3)

CopySDF Example Code (continued)
SDF Component Toolkit Applications | 199

yMin = oBox.MinY + Abs((Abs(oBox.MaxY) - Abs(oBox.MinY)) / 3)
yMax = oBox.MaxY - Abs((Abs(oBox.MaxY) - Abs(oBox.MinY)) / 3)
oBox.SetExtent xMin, yMin, xMax, yMax

'Start searching from insdf and writing to outsdf

oTlktIn.BeginSpatialIndexSearch sdfAllObjectClasses, oBox
oTlktOut.BeginUpdate

Set oObj = oTlktIn.SearchToNextObject

i = 0
Do While Not (oObj Is Nothing)

oTlktOut.AddObject oObj
i = i + 1
Set oObj = oTlktIn.SearchToNextObject

Loop

'Wind up
oTlktIn.EndSearch
oTlktOut.EndUpdate
oTlktIn.Close
oTlktOut.Close

ShowMessage sdfInName.Text & " copied to " & sdfOutName.Text
ShowMessage "Total features written: " & i

Exit Sub

ErrHandler:
'Display the error number/message
MsgBox Err.Number & " : " & Err.Description
'Reset the handler before exiting
On Error GoTo 0

End Sub

Private Sub btnExit_Click()
End

End Sub

Sub ShowMessage(msg As String)

txtMsg.Text = txtMsg.Text & msg & vbCrLf

End Sub

CopySDF Example Code (continued)
200 | Chapter 7 Applications

Function GetObjectTypeString(ObjType As SdfObjectType) As String
Select Case ObjType

Case sdfPointObject:
GetObjectTypeString = "POINT"

Case sdfPolygonObject:
GetObjectTypeString = "POLYGON"

Case sdfPolylineObject:
GetObjectTypeString = "POLYLINE"

Case sdfPolyPolylineObject:
GetObjectTypeString = "POLYPOLYLINE"

Case sdfPolyPolygonObject:
GetObjectTypeString = "POLYPOLYGON"

End Select

End Function

CopySDF Example Code (continued)
SDF Component Toolkit Applications | 201

202

Index

A
accessing maps

from ActiveX Control 32
from Java Edition 35

with HTML 35
with Java 38
with JavaScript/JScript 35

from Plug-In 32
with applet for Plug-In 40

accessing secure data 43
Active Server Pages (ASP)

about 109
and Autodesk MapGuide LiteView 26
creating reports with 109
defined 88
displaying data 115
listing database contents with 109
listing file contents 111
querying data 14, 115
SDF Component Toolkit example 171
updating data 14

ActiveX Control 11
detecting with CODEBASE 27
displaying a map in 20
embedding a map 22
installing on client machines 27
linking to a map 20

adding
custom page elements 68
map layers 53

applet
accessing JavaScript 42
for Plug-In 40
for Plug-In event handler 83
peer for Java Edition 38
wrapper for Java Edition 24, 38
See also Java, Java Edition

application examples
DWG filtering 164
facilities management 156
municipal 140
redlining 136
SDF Component Toolkit 171-72, 181, 188, 196

applications 11, 136
advanced 15
as Java wrapper for Java Edition 38
creating 15, 17
debugging 48
simple 15
stand-alone 19

argument type checking 48
ASP. See Active Server Pages
attribute data

displaying for selected features (reports) 85,
86

listing with ColdFusion 89, 92
updating dynamically 86, 102, 125

Autodesk DWG. See DWG 8
Autodesk MapGuide Author

creating popup menus with 108, 132
creating reports with 92, 103, 116, 126

Autodesk MapGuide LiteView 26
Autodesk MapGuide Server security 43
Autodesk MapGuide Viewer ActiveX Control. See

ActiveX Control
Autodesk MapGuide Viewer Plug-In. See Plug-In
Autodesk MapGuide Viewer, Java Edition. See Java

Edition
Autodesk MapGuide Viewer. See Viewer
Autodesk MapGuide Web site 13
autoRefresh 46

B
bitmap support 8
browsers supported 9, 18
busy state

about 43
detecting change in 46
handling 43

C
CFM files 89, 92, 102
checking argument types 48
Index | 203

ColdFusion 10
about 89
and Autodesk MapGuide LiteView 26
creating reports with 85, 86, 89, 142, 146,

149
defined 88
listing database contents with 89, 92, 102
querying data 14, 85
template files 89, 92, 102
updating data 14, 85

coordinates of map features 58
counting

map features 62
map layers 50

creating Viewer API applications 15
custom page elements 68

D
data

attribute, listing with ColdFusion 89, 92
attribute, updating dynamically 86, 102, 125
querying 14
reports 85, 86
security 43
updating 14
updating via map 102
updating via the map 86, 125

databases, listing contents
with Active Server Pages (ASP) 109
with ColdFusion 89, 92, 102

debugging 48
enabling/disabling errors 48
handling errors 47

detecting
busy state 46
map busy state change 46
map refresh 46

digitizing
circles 61
points 140

displaying maps 14
ActiveX Control 20
area of 21
for Plug-In 20
in frame 21

downloading required software 25, 34, 39
drawing file. See DWG
DSNs

working with 90, 102, 112, 116, 125
See also OLE DB

DWG 8, 164
application examples 164
DWG layer, defined 165
DWG map layer, defined 165

DWG (continued)
filtering layers 164
MapGuide map layer, defined 165

Dynamic Authoring Toolkit 10

E
embedding

Java Edition in an HTML page 35
map 18

for ActiveX Control 22
for Java Edition 24, 35
for Plug-In 22
in frame 23

MWFs in HTML pages 20
enabling print events 66
errors 48

argument types 48
disabling 48
enabling 48
getting error codes 48
handling 47

event handler
browser differences 71

event handlers
ActiveX Control 75
applet for Plug-In 83
defined 70
Java Edition 72
Plug-In 72
Plug-In and ActiveX Control 75
required Java Edition software 25, 39
required Plug-In software 34
setting up 72
writing 78

event observer
defined 70
required software, Java Edition 25, 39
required software, Plug-In 34
set methods 71
setting up 72

events
applet for Plug-In 83
defined 70
detecting busy state 46
enabling print events 66
handling

ActiveX Control 75
Plug-In and ActiveX Control 75
Plug-In and Java Edition 72

page setup 79
print 81
setting up handlers 72
writing handlers for 78

exceptions. See errors
204 | Index

F
facilities management example 156
features

counting 62
map 56

filtering DWG data 164

G
generating reports 86
getLayerSetup 43
getMap function 32, 33
getVertices 43

H
handling busy state and map refresh 43

detecting map busy state change 46
detecting map refresh 46

handling errors 47
handling events

ActiveX Control 75
Plug-In and ActiveX Control 75
Plug-In and Java Edition 72
setting up 72

help
for Autodesk MapGuide Viewer API 13
for users 11

HTML pages
creating 90, 95, 104, 114, 118, 127

I
installing client Viewer

ActiveX Control 27
Java Edition 29
Plug-In 28

intermediate updates 8, 47
Internet Explorer

and observer objects 36
embedding a map 22
event handling 71
event observers in 70
JavaScript support in 32, 36
map access 32

invoking radius mode 61

J
Java 10

applet wrapper for Java Edition 38
application as wrapper for Java Edition 38
peer applet for Java Edition 38

Java Edition 11, 24, 35
displaying the map in 24
embedding Java Edition in an HTML page 35
embedding maps 35
installing on client machine 29
Java applet wrapper for 24, 38
Java application wrapper for 38
Java peer applet for 38
map access 35

from HTML 35
from Java 38
from JavaScript/JScript 35

platform requirements 9
required software 25, 39
Viewer differences 39

Java Server Pages (JSP) 26
JavaScript 10, 36, 78

accessing from an applet 42
accessing reports with 100, 108, 122, 133
browser support 36
Java Edition support 36
operating system support 36

JScript 10, 36, 112
browser support 36
Java Edition support 36
operating system support 36

K
Key Index Files (KIFs). See SDF Component Toolkit
keys of map features 56

L
languages 10
launching reports 87
layers

counting with the API 50
DWG 164
DWG layer, defined 165
DWG map layer, defined 165
listing with the API 51
map 50

adding of 53
changing data source properties of 165
counting of 50
listing of 51
visibility 55

MapGuide map layer, defined 165
visibility 55

legend, suppressing in printout 64
linking

MWFs to HTML pages 20
to map 18, 20

listing map layers 51
LiteView. See Autodesk MapGuide LiteView
Index | 205

M
MacOS, supported configurations 19
map

accessing
from ActiveX Control 32
from Java Edition with Java 38
from Plug-In 32
from Plug-In with applet 40

busy state, detecting change in 46
controlling redraw 47
displaying 14

area of 21
in frame 21

embedding 18
for ActiveX Control 22
for Java Edition 24
for Plug-In 22

features 50, 56
counting 62
getting coordinates of 58
getting keys 56

getting the mode of 9
intermediate updates to 47
layers 50

adding of 53
changing data source properties of 165
counting of 50
DWG properties and 165
listing of 51
visibility of 55

linking to 18, 20
objects 50, 56
printing

customizing title 64
suppressing legend 64
suppressing North arrow 64
suppressing scale bar 64

redraw operations 8
refresh detecting 46
viewing 14

map window file. See MWF
Map Window Properties dialog box

Popup Menu tab 108, 132
Reports tab 103, 116, 126

MapGuide map layer, defined 165
MapGuideObserver6.class 71, 173
MapGuideObserver6J.class 71
menus, adding items to 108, 132
MGDwgDataSources 8, 165
MGError 47, 48
MGMapObject 50
Microsoft Internet Explorer. See Internet Explorer
mode, of map 9
municipal application example 140
MWF 13, 20, 165

N
Netscape Navigator

embedding a map 22
event handling 71
event observers in 70
JavaScript support in 36
map access 32

new features 8
DWG support 8
Java Edition platform support changes 9
map mode retrieval 9
map redraw operations 8, 47
symbol bitmap support 8

O
object 50
OLE DB

working with data sources 89, 90, 102, 110,
112, 116, 125

See also DSNs
operating systems supported 9, 18
output, customizing 64

P
page coordinate system (PCS) 67
page elements 67

adding 68
positioning for printing 67

page setup events 79
PCS. See page coordinate system
Perl 26
platform requirements 9, 18
platform support changes 9
Plug-In 11

applet for communication 40
displaying a map in 20
embedding a map 22
installing on client machine 28
linking to a map 20
required software 34

points, digitizing 140
popup menus, creating 108, 132
printing 64

customizing 64
enabling print events 66
events for 79, 81
handler functions for print events 78
priority of 65

programming languages 10
206 | Index

Q
querying data 14

and server-side scripting 86
reports 85

R
radius mode, invoking 61
redlining 10

application example 136
compared to updating SDFs 171
defined 136

refresh 46
reports

about 86
accessing with JavaScript 100, 108, 122, 133
accessing with the Viewer API 100, 108, 122,

133
adding to a map 85, 86
and server-side scripting 85
creating in Autodesk MapGuide Author 92,

103, 116, 126
creating with ASP 109
creating with ColdFusion 89, 142, 146
file types

.asp 109, 112, 116, 125

.cfm 89, 92, 102
generating 86
launching 87
naming for ActiveX Control 87
report script 86
request 87

required software
Java Edition event handling 25, 39
Java Edition platform requirements 9
Plug-In event handling 34

S
scripting languages 10

See also JavaScript, JScript, Visual Basic
SDF Component Toolkit 10

application examples 171
adding points of interest to map 172
converting to an SDF 181
copying an SDF 196
getting information about an SDF 188

development environments 171
security

of Autodesk MapGuide Server 43
of data 43
of Viewer API 43

server-side scripts and applications 85, 86

setting events for event observers 71
Solaris, supported configurations 19
Spatial Data Files (SDFs). See SDF Component

Toolkit
Spatial Index Files (SIFs). See SDF Component

Toolkit
stand-alone application 19
supported configurations 18
symbols

adding to a printout 64
bitmap support 8

U
updating data via map 14, 86, 102, 125
URL parameters, reports and 93, 104, 117, 126

V
VBScript 10, 112

defined 70
event handler example 75, 78
setting up event handlers 70, 71, 75
supported configurations 19
using for reports in Active Server Pages 109
See also Visual Basic

Viewer
about 11
ActiveX Control 11, 20
creating an application 15
Java Edition 11, 24
Plug-In 11, 20
types of 11

Viewer API 13
about 11
accessing reports with 100, 108, 122, 133
applications 10, 13, 136
counting map features 62
counting map layers 50
creating an application 15
developing with 17
DWG support 164
events 70

Internet Explorer and 70
Netscape Navigator and 70

listing map layers 51
online help 13
programming languages 10
querying data 14
scripting languages 10
security 43
updating data via map 14
viewing maps 14
Index | 207

visibility
of DWG layers 164
of map layers 55

Visual Basic 10
SDF Component Toolkit example 181, 188,

196
stand-alone Windows applications 19

W
Windows

supported configurations 19

X
XML 10

Z
zooming 61
208 | Index

	Developer’s Guide
	Contents
	Introduction
	What’s New in Release 6
	Autodesk DWG Data Source Support
	Enhanced Support for Map Redraw Operations
	Symbol Bitmap Support
	Map Mode Retrieval Support
	Java Edition Platform Support Changes

	Before You Begin
	Familiarity with Autodesk MapGuide
	Programming and Scripting Languages
	Your Audience
	User Help

	About the Autodesk MapGuide Viewer API
	Autodesk MapGuide Viewer API Help
	Autodesk MapGuide Web Site

	What Is an Autodesk MapGuide Viewer API Application
	Viewing Maps
	Querying and Updating Data

	Creating an Autodesk MapGuide Viewer API Application

	Displaying Maps
	Overview
	Map Display for ActiveX Control and Plug-In
	Linking to a Map
	Displaying a Linked Map in a Different Window or Frame
	Displaying a Specific Area of the Map

	Embedding a Map
	Embedding a Map in a Frame-Based Page

	Map Display for the Java Edition
	Map Display for Autodesk MapGuide LiteView
	Installing Viewers on Client Machines

	Accessing Maps
	Overview
	Map Access for ActiveX Control and Plug-In
	Required Software for Autodesk MapGuide Viewer Plug-In

	Map Access for the Java Edition
	Map Access from HTML
	Using JavaScript or JScript

	Map Access Using Java
	Wrapper Java Applet
	Peer Java Applet
	Wrapper Java Application

	Required Software for the Java Edition
	Java Edition Differences
	Functional Differences with Java Edition
	Browser Differences with Java Edition

	Communicating with the Plug-In from a Java Applet
	Accessing the Plug-In from a Java Applet
	Calling JavaScript Functions from a Java Applet

	Accessing Secure Data
	Handling Busy State and Map Refresh
	About the Busy State
	Controlling Map Refresh Operations
	Using the autoRefresh Flag
	AutoRefresh Flag Caveats
	Detecting Map Refreshes
	Detecting a Change in the Busy State
	Controlling Intermediate Update Map Redraw Operations

	Handling Errors
	Getting Error Codes
	Checking for Incorrect Argument Types

	Debugging an Application

	Working with Map Layers, Map Features, and Printing
	Overview
	Working with Map Layers
	Counting Map Layers
	Listing Map Layers
	Adding a Map Layer
	Linking Map Layers
	Toggling Map Layer Visibility On and Off

	Working with Map Features
	Getting Keys of Selected Map Features
	Getting Coordinates of a Selected Map Feature
	Invoking Select Radius Mode
	Zooming In on Selected Features
	Counting Map Features

	Working with Printing
	Setting the Print Priority
	Enabling the Print Events
	Positioning Page Elements with Page Coordinate System Units
	Adding Custom Page Elements

	Handling Events
	Overview
	Working with Event Handlers
	Browser Differences
	Event Observer Set Methods

	Setting Up Event Handlers
	Plug-In and Java Edition Event Handlers
	ActiveX Control Event Handlers
	Plug-In and ActiveX Control Event Handlers
	VBScript Example
	JavaScript Example
	VBScript and JavaScript Example

	Writing Event Handlers
	Page Setup Event Handler Example
	Print Event Handler Example
	Plug-In Event Handler Example

	Using Reports to Query and Update Data Sources
	Overview
	How Reports Are Generated
	Specifying the Report Script
	The Request
	Launching the Report

	Introducing ColdFusion and ASP
	Creating Report Scripts with ColdFusion
	Listing File Contents with ColdFusion
	Setting Up the Query
	Controlling the Output
	Seeing the Results

	�Querying and Displaying Data via the Map with ColdFusion
	Setting Up the Report in Autodesk MapGuide Author
	Creating the Report Script
	Creating an HTML Page to Display the Map
	Seeing the Results
	Redirecting Report Output
	Adding a Button with the Viewer API

	Modifying a Database via the Map with ColdFusion
	Setting Up the Report in Autodesk MapGuide Author
	Creating the Report Scripts
	Creating an HTML Page to Display the Map
	Creating a Custom Menu Item
	Accessing Your Application with the Viewer API

	Creating Report Scripts with ASP
	Summary of ASP Objects, Components, and Events
	Listing File Contents with ASP
	Specifying a Scripting Language
	Selecting Database Records
	Controlling the Output
	Seeing the Results

	�Querying and Displaying Data via the Map with ASP
	Setting Up the Report in Autodesk MapGuide Author
	Creating the Report Script
	Creating an HTML Page to Display the Map
	Seeing the Results
	Redirecting Report Output
	Adding a Button with the Viewer API

	Modifying a Database via the Map with ASP
	Setting Up the Report in Autodesk MapGuide Author
	Creating the Report Scripts
	Creating an HTML Page to Display the Map
	Creating a Custom Menu Item
	Accessing Your Application with the Viewer API

	Applications
	Overview
	Custom Redlining Application
	Redlining Example Code

	Municipal Application
	Municipal Application Example Code

	Facility Management Application
	Facilities Management Application Example Code

	DWG Filtering Application
	Understanding Layers in Autodesk MapGuide
	Changing Map Layer Data Source Properties
	DWG Filtering Application Example Code
	Selection Changed Function (selChanged)
	Show Properties Function (showProperties)

	SDF Component Toolkit Applications
	Updating SDF Files—an ASP Example
	Converting to an SDF File—a Visual Basic Example
	Getting SDF File Information—a Visual Basic Example
	Copying an SDF File—a Visual Basic Example

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	U
	V
	W
	X
	Z

