
October 2001

Autodesk MapGuide® Release 6
Dynamic Authoring Toolkit

Developer’s Guide

Copyright © 2001 Autodesk, Inc.
All Rights Reserved

AUTODESK, INC. MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, REGARDING THESE MATERIALS
AND MAKES SUCH MATERIALS AVAILABLE SOLELY ON AN “AS-IS” BASIS.

IN NO EVENT SHALL AUTODESK, INC. BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF PURCHASE OR USE OF THESE MATERIALS. THE
SOLE AND EXCLUSIVE LIABILITY TO AUTODESK, INC., REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED THE
PURCHASE PRICE OF THE MATERIALS DESCRIBED HEREIN.

Autodesk, Inc. reserves the right to revise and improve its products as it sees fit. This publication describes the state of this product
at the time of its publication, and may not reflect the product at all times in the future.

Autodesk Trademarks

The following are registered trademarks of Autodesk, Inc., in the USA and/or other countries: 3D Plan, 3D Props, 3D Studio, 3D
Studio MAX, 3D Studio VIZ, 3DSurfer, ActiveShapes, ActiveShapes (logo), Actrix, ADE, ADI, Advanced Modeling Extension, AEC
Authority (logo), AEC-X, AME, Animator Pro, Animator Studio, ATC, AUGI, AutoCAD, AutoCAD Data Extension, AutoCAD
Development System, AutoCAD LT, AutoCAD Map, Autodesk, Autodesk Animator, Autodesk (logo), Autodesk MapGuide,
Autodesk University, Autodesk View, Autodesk WalkThrough, Autodesk World, AutoLISP, AutoShade, AutoSketch, AutoSurf,
AutoVision, Biped, bringing information down to earth, CAD Overlay, Character Studio, Design Companion, Design Your World,
Design Your World (logo), Drafix, Education by Design, Generic, Generic 3D Drafting, Generic CADD, Generic Software,
Geodyssey, Heidi, HOOPS, Hyperwire, Inside Track, Kinetix, MaterialSpec, Mechanical Desktop, Multimedia Explorer, NAAUG,
ObjectARX, Office Series, Opus, PeopleTracker, Physique, Planix, Powered with Autodesk Technology, Powered with Autodesk
Technology (logo), RadioRay, Rastation, Softdesk, Softdesk (logo), Solution 3000, Texture Universe, The AEC Authority, The Auto
Architect, TinkerTech, VISION*, WHIP!, WHIP! (logo), Woodbourne, WorkCenter, and World-Creating Toolkit.

The following are trademarks of Autodesk, Inc., in the USA and/or other countries: 3D on the PC, 3ds max, ACAD, Advanced User
Interface, AME Link, Animation Partner, Animation Player, Animation Pro Player, A Studio in Every Computer, ATLAST, Auto-
Architect, AutoCAD Architectural Desktop, AutoCAD Architectural Desktop Learning Assistance, AutoCAD Learning Assistance,
AutoCAD LT Learning Assistance, AutoCAD Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface, Autodesk Animator
Clips, Autodesk Animator Theatre, Autodesk Device Interface, Autodesk Inventor, Autodesk PhotoEDIT, Autodesk Software
Developer’s Kit, Autodesk Streamline, Autodesk View DwgX, AutoFlix, AutoSnap, AutoTrack, Built with ObjectARX (logo),
ClearScale, Colour Warper, Combustion, Concept Studio, Content Explorer, cornerStone Toolkit, Dancing Baby (image),
DesignCenter, Design Doctor, Designer’s Toolkit, DesignProf, DesignServer, DWG Linking, DXF, Extending the Design Team, FLI,
FLIC, GDX Driver, Generic 3D, gmax, gmax (logo), gmax ready (logo), Heads-up Design, Home Series, i-drop, Kinetix (logo),
ObjectDBX, onscreen onair online, Ooga-Chaka, Photo Landscape, Photoscape, Plasma, Plugs and Sockets, PolarSnap, Pro
Landscape, Reactor, Real-Time Roto, Render Queue, SchoolBox, Simply Smarter Diagramming, SketchTools, Sparks, Suddenly
Everything Clicks, Supportdesk, The Dancing Baby, Transform Ideas Into Reality, Visual LISP, Visual Syllabus, VIZable, Volo, and
Where Design Connects.

Third Party Trademarks
Apple and Macintosh are trademarks of Apple Computer, Inc., registered in the U.S. and other countries
ColdFusion is a registered trademark of Macromedia, Inc. All rights reserved.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries.
Netscape and Netscape Navigator are registered trademarks of Netscape Communications Corporation in the United States and
other countries.
Microsoft and ActiveX are registered trademarks of Microsoft Corporation in the United States and/or other countries.
Oracle is a registered trademark, and Oracle8i and Oracle9i are trademarks of Oracle Corporation.
All other brand names, product names or trademarks belong to their respective holders.

Third Party Software Program Credits
Copyright © 2001 Microsoft Corporation. All rights reserved.
Portions of this product are distributed under license from D.C. Micro Development, © Copyright D.C. Micro Development. All
rights reserved.
InstallShield ™ Copyright © 2001 InstallShield Software Corporation. All rights reserved.
This product includes software developed by the Apache Software Foundation http://www.apache.org.

GOVERNMENT USE
Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set forth in FAR 12.212 (Commercial Computer
Software-Restricted Rights) and DFAR 227.7202 (Rights in Technical Data and Computer Software), as applicable.
 1 2 3 4 5 6 7 8 9 10

Contents

Chapter 1 Overview of the Dynamic Authoring Toolkit 7
About This Document 8

Documentation Assumptions 8
Copying Text from This Document 8

Online Help . 8
Introducing the MWX Format 9
What Is the Dynamic Authoring Toolkit 10
Common Applications 10

Creating Dynamic Maps 11
Creating Dynamic Map Layers 12
Substituting Map Settings 12
Infinite Zoom 13
Cataloging Map Information 13

Useful Acronyms 14

Chapter 2 Setting Up the Development Environment 15
Installing the Dynamic Authoring Toolkit 16

System Requirements 16
Installation Procedure 16
Installed Files 17
MSXML Parser Installation 18

Understanding the Operating Environment 18
Clients 19
Web Servers 19
Application Servers 20
Data Servers and Data Sources 20

Understanding the Development Environment 21
Development Applications 22
Data Utilities 22
DOM Data and Editing Tools 22

Getting Started 23
3

Chapter 3 Developing an Application 25
Designing the Application 26
Coding the Application. 27

Choosing a Development Platform 27
Leveraging the Application Examples 27

Handling Errors 28
Active Server Pages 28
ColdFusion 28
Visual Basic. 28

Chapter 4 Working with XML 29
Using XML Documents 30
Understanding the Schema Structure 31
Using the Schema 32

Locating Schema Elements 32
Viewing the Schema 33

Editing XML Documents 34
Using a Text Editor 34
Using an XML Parser. 34
Working with Large MWX Files 34
XML Parser Example 35

Validating XML Documents 36
Validating Files Using the Dynamic Authoring Toolkit 36
Validating Files Using a Parser 37

Converting File Formats 37
Converting from MWF to MWX 38
Converting from MWX to MWF or MLF 39

Working with Product Versions 42
CreatedBy 42
Version 42

Chapter 5 Authoring Dynamic Maps 43
Creating a Map Library 44

Creating Map Templates and Composites 44
Creating a Library of Map Components. 44
4 | Contents

Customizing Maps 46
Working with Coordinate Systems 46
Working with Layers and Layer Groups 47
Working with Data Sources 51
Working with Styles 54
Working with Themes 58
Working with Symbols 62
Working with Reports 65
Working with Zoom Gotos 68
Working with Popup Menus 70

Chapter 6 Delivering Dynamic Maps 73
Understanding the Map Delivery Process 74
Developing an Interview Form 75
Displaying a Dynamic Map 76

Setting the MIME Type 76
Embedding a Map 76

Building and Returning the Map 77
Working with XML Documents 77
Returning a Binary Stream 77
Using an Intermediate File 79

Returning Map Layers 80
Writing Server Scripts 80
Writing Autodesk MapGuide Viewer Scripts 81

Chapter 7 Reference 83
Dynamic Authoring Toolkit API 84

MapWindowFile Object 84
Properties 84
Methods 89
Enumerations 95
Error Codes 95

XML Schema Reference 98

Index . . 119
Contents | 5

6

I

�

�

�

�

�

�

1
Overview of the Dynamic
Authoring Toolkit
n this chapter

About this document

Online Help

Introducing the MWX
format

What is the Dynamic
Authoring Toolkit

Common applications

Useful acronyms
The Dynamic Authoring Toolkit supports applications

that author Map Window Files (MWF) dynamically. The

Dynamic Authoring Toolkit converts the MWF format to

the MWX format, which you can modify using standard

third-party text editors and XML parsers. XML-based

development is easier to master than an API with hun-

dreds of methods, so you can quickly and efficiently

develop dynamic map solutions for the Autodesk

MapGuide® users.

This chapter provides an orientation to this guide, intro-

duces the Dynamic Authoring Toolkit, and presents a few

common applications.
7

About This Document

This document is written for developers who create custom solutions for map
delivery systems. It explains the operating and development environments
for dynamic maps, and describes how to write an application that uses the
Dynamic Authoring Toolkit.

Documentation Assumptions

This document assumes that you have a basic understanding of XML docu-
ments, know how to create maps with Autodesk MapGuide® Author, and are
familiar with the contents of the Autodesk MapGuide User’s Guide and
Autodesk MapGuide Help.

Copying Text from This Document

You can copy text from this PDF file and paste it into another application.
For example, you may want to copy code samples for use in your own work.

To copy text from a PDF file

1 Click the Text Select tool on the Acrobat Reader toolbar.

2 Drag to select the text you want to copy.

3 Right-click and choose Copy from the shortcut menu.

The text is copied to the Clipboard.

Online Help

The Dynamic Authoring Toolkit includes the following online Help:

� Dynamic Authoring Toolkit Developer’s Guide—This document
� Dynamic Authoring Toolkit Help—Visual Basic reference
� Dynamic Authoring Toolkit Example Help—Example application Help

The following procedures explain how to view these documents.

To view the Dynamic Authoring Toolkit Developer’s Guide

� Choose Start ➤ Programs ➤ Autodesk MapGuide ➤ Documentation ➤

Dynamic Authoring Toolkit Help.
8 | Chapter 1 Overview of the Dynamic Authoring Toolkit

To view the Dynamic Authoring Toolkit Help from Visual Basic

1 Launch Visual Basic.

2 Choose View ➤ Object Browser.

3 Select the Dynamic Authoring Toolkit library. If it’s not listed, add a refer-
ence to the Autodesk MapGuide Dynamic Authoring Toolkit to your
project.

The classes, methods, and properties are displayed.

4 Select the class, method, or property for which you want help.

5 Click Object Browser Help.

To view the Dynamic Authoring Toolkit Example Help

1 Navigate to the \Examples folders of the Dynamic Authoring Toolkit.

2 Double-click index.htm.

Introducing the MWX Format

Autodesk MapGuide® Release 6 introduces a new map file format, called Map
Window XML (MWX), that significantly increases flexibility for developers
of Autodesk MapGuide applications. An MWX file describes an Autodesk
MapGuide map in a text-based format, which is organized in a logical struc-
ture that shows the hierarchy and relationship of map elements. You can
now author new maps or modify existing ones by working with its MWX
representation. Because the MWX format conforms to XML standards, you
can build MWX files programmatically using standard XML parsers and
development environments.

You can easily create a new map by building its MWX representation from a
library of base maps, layers, layer groups, Zoom Gotos, reports, and menus
that you create with Autodesk MapGuide Author. You assemble and
customize these map components at run time using a third-party parser.
Using a library simplifies the process of creating an MWX representation of
a map, yet preserves the flexibility of the XML approach.

If you only want to change properties on existing maps, you can simply edit
their attribute values. For example, to reset the features retrieved from a data-
base, you can modify the SQL Where clause value in an existing MWX file.

Whether you are creating a new map or modifying an existing one, you need
to convert the XML representation back to the MWF format for the Autodesk
MapGuide® Viewer. You can do this under program control using the
Autodesk MapGuide Dynamic Authoring Toolkit.
Introducing the MWX Format | 9

What Is the Dynamic Authoring Toolkit

The Dynamic Authoring Toolkit provides the key component for authoring
maps at application run time—the capability to convert between the MWX
and MWF formats programmatically.

Specifically, the Dynamic Authoring Toolkit is an in-process COM DLL
(MGDAT.dll) that is compatible with any environment that supports COM
automation. The COM interface includes methods and properties for
converting file formats, validating MWXs, and compressing MWFs and
MLFs. You can write MWFs or MLFs to a file or return them as data streams
to Autodesk MapGuide® Viewer.

The Dynamic Authoring Toolkit includes the following components:

� The COM component
� Application examples
� Sample MWF and MWX data
� Online help

Common Applications

This section describes a few common applications for the Dynamic
Authoring Toolkit. Four of these applications have a corresponding example
that is installed with the product, as shown in the following table:

Application Examples

Application Corresponding
Example

Application
Type

Creating Dynamic Maps Example 1 Network

Creating Dynamic Map Layers Example 2 Network

Substituting Map Settings Example 3 Stand-alone

Infinite Zoom Example 4 Network

Cataloging Map Information None Stand-alone
10 | Chapter 1 Overview of the Dynamic Authoring Toolkit

A network application dynamically authors maps and delivers them to
Autodesk MapGuide Viewer over the Web. A stand-alone application uses a
local executable that simply alters or records map attributes and saves the
result.

Creating Dynamic Maps

The Dynamic Authoring Toolkit solves the following problems commonly
encountered with large GIS (Geographic Information System) applications:

� Maintenance problems—A large Autodesk MapGuide system may have
many map files, each created for the requirements of specific user groups.
Creating and maintaining a large collection of MWFs can be a difficult
task for the administrator, and selecting and using the MWFs can be con-
fusing for application users.

� Performance problems—Although it’s possible to create a few large
MWFs that contain all layers, reports, Zoom Gotos, and popup menus, it’s
not practical because the resultant files load slowly and are still difficult to
use.

� Usability problems—Users have difficulty identifying layers using only
the descriptions in the Autodesk MapGuide Viewer legend, and with a
large number of reports, application users can become confused when try-
ing to determine which report is relevant to their task.

A partial solution is to create a set of base maps and MLFs (Map Layer File)
that you combine using the Autodesk MapGuide Viewer API. This approach
requires client-side scripts that collect user input and build the map.
However, this solution does not accommodate different requirements for
reports, Zoom Gotos, and popup menus, and does not support dynamic
changes to layer details, such as styles and themes.

A dynamic authoring application provides a complete solution. Starting with
a library of projections, layers, reports, Zoom Gotos, and popup menus, you
can write code that builds and delivers custom maps according to specific
user requests. You can also alter or augment the library of map components
to dynamically apply new map features, such as styles and themes. The
advantage of a dynamic map over a static collection of maps is the large
number of map combinations you can achieve using just a few map compo-
nents. You improve the usability by creating a user-friendly interface that
simplifies the process of selecting layers and reports.
Common Applications | 11

Creating Dynamic Map Layers

Autodesk MapGuide themes emphasize graphical features according to a
database of feature attributes. For example, a map of a metropolitan area
might display different colors or patterns in areas with different electrical
usage. Using Autodesk MapGuide Author, an administrator can manually
apply themes to maps according to user requests. However, this process is
slow and doesn’t accommodate an application that requires dynamic appli-
cation of themes.

For example, law enforcement officials could search for illegal hydroponic
activities by applying a succession of themes to a metropolitan area map.
Because hydroponic systems often use artificial light, they could first apply a
theme to locate properties with high electrical usage. To refine their results,
they could add additional income criteria to the theme that excludes valid
home-based businesses with high electricity usage. The resultant theme helps
officials quickly determine which houses have both high electricity
consumption and low income.

The Dynamic Authoring Toolkit supports such applications that require
dynamic themes. Starting with a theme template, a code can dynamically
construct and add a theme that satisfies a user request. The new theme can
be delivered as an MLF to Autodesk MapGuide Viewer, where a script replaces
the existing layer with the new, themed layer. A well-designed user interface
can give users a wide range of theme options that are easy to understand.

Substituting Map Settings

Moving a library of existing maps to a new server can be a tedious and time-
consuming task, especially if there are many existing MWFs. An adminis-
trator must open each MWF in Autodesk MapGuide Author and change the
server URL setting for every layer. If the activity is routine, such as moving
maps from a staging system to a production system, the task is even more
difficult and the potential for human error is greater.

Using the Autodesk Dynamic Authoring Toolkit and an industry-standard
XML parser, you can write an application to automate the task of updating
server URLs. The application can convert each MWF to an MWX, edit the
server URL property for each layer, and convert it back to an MWF. As
Example 3 shows, the application can include safeguards against undesired
changes, such as targeting specific URLs and counting occurrences.
12 | Chapter 1 Overview of the Dynamic Authoring Toolkit

Infinite Zoom

Users normally change the display magnification of a map using standard
Autodesk MapGuide Viewer features. However, the map projection and
embedded zoom limits restrict the range that Autodesk MapGuide Viewer
can accommodate.

You can extend the zoom range of a map by dynamically altering its projec-
tion attributes or zoom limits. Using the Autodesk MapGuide Viewer API and
the MapGuide Dynamic Authoring Toolkit, you can monitor user zoom
activity and change the zoom limits or projection attributes dynamically. To
the user, the zoom range seems infinite because they can view the map with
as much detail as desired.

Note Changing projection information is a powerful tool, but it is an advanced
topic for developers who thoroughly understand map projections and their
attributes.

Cataloging Map Information

Companies often need to create and maintain a catalog of information about
the content and quality of their Autodesk MapGuide maps. The information
could include official map names, projections and coordinate systems,
layers, symbols, digitizing scales, and other embedded information. The
catalog could also include related information, such as the year the map was
created and its quality. A well-organized and up-to-date catalog of map infor-
mation can help new employees learn the system, record important map
resources, and support developers who need to know about the availability
and content of maps. However, manual cataloging is very time-consuming
and tedious.

Using the Dynamic Authoring Toolkit you can automate this task. A stand-
alone application can periodically scan the Autodesk MapGuide files, extract
the pertinent information, and save it in a database or file system. A separate
reporting system might subsequently query and display the catalog informa-
tion nicely formatted.
Common Applications | 13

Useful Acronyms

The following table lists the acronyms used in this document:

Useful Acronyms

Term Definition

API Application Program Interface

ASP Active Server Page

COM Component Object Model

DOM Document Object Model

MLF Map Layer File

MWF Map Window File

MWX Map Window XML file

OLE Object Linking and Embedding

XDR XML Data Reduced

XML Extensible Markup Language

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations
14 | Chapter 1 Overview of the Dynamic Authoring Toolkit

I

�

�

�

�

2
Setting Up the Development
Environment
n this chapter

Installing the Dynamic
Authoring Toolkit

Understanding the
operating environment

Understanding the
development environment

Getting started
This chapter explains the installation procedure for the

Dynamic Authoring Toolkit, and describes the operating

and development environments needed for dynamic

map solutions.
15

Installing the Dynamic Authoring Toolkit

This section explains how to install the Dynamic Authoring Toolkit.

System Requirements

The Dynamic Authoring Toolkit requires the following platform:

� Pentium-based PC
� 32 MB of memory
� 12 MB of hard disk space

The operating system must be one of the following:

� Microsoft ® Windows® NT 4 Server with Service Pack 4, 5, or 6
� Microsoft Windows 2000 Server with Service Pack 2
� Microsoft Windows 2000 Professional with Service Pack 2

If you are using the Dynamic Authoring Toolkit in a Web application, you
also need a Web server. For more information about supported Web servers,
see “Web Servers” on page 19.

Installation Procedure

You can install the Dynamic Authoring Toolkit on any platform that meets
the minimum requirements. For Web applications however, you must install
the Dynamic Authoring Toolkit on the Web server host.

Note Use an account with system administrator rights to install the Dynamic
Authoring Toolkit.

To install the toolkit

1 Insert the product CD in the CD-ROM drive.

2 Launch the MGDynamicAuthoringTk60.exe installer.

3 Follow the on-screen instructions.
16 | Chapter 2 Setting Up the Development Environment

Installed Files

The installer places the following files and folders on the hard drive and
registers the COM components with the operating system:

The default installation folder is:

C:\Program Files\Autodesk\MapGuideDynamicAuthoringToolkit6

When installing the Dynamic Authoring Toolkit on a server running
Autodesk MapGuide® Server Service, the following MIME (Multipurpose
Internet Mail Extensions) types are automatically registered with the
Microsoft® Internet Information Server (IIS) or Netscape® Enterprise Server:

� .mwf—application/x-mwf
� .mlf—application/x-mlf
� .mwx—application/x-mwx

Installed Files

File Description

MGReadme.htm
MGDynamicAuthoringToolkitDevGuide.pdf
.\Examples\index.htm
.\Help\MGDAT.hlp
.\Help\MGDAT.cnt

Readme, Developer documentation, and
Help files

.\bin\MGDAT.dll

.\bin\MapWindowXMLSchema.xdr

.\bin\xdr-schema.xslt

Dynamic Authoring Toolkit COM compo-
nent, XML schema, and stylesheet

<system folder>\Msxml3.dll Microsoft XML parser COM component

.\Examples\Example1\<project files>

.\Examples\Example2\<project files>

.\Examples\Example3\<project files>

.\Examples\Example4\<project files>

Application examples
Installing the Dynamic Authoring Toolkit | 17

MSXML Parser Installation

The Dynamic Authoring Toolkit installer automatically launches the MSXML
3.0 setup program, which installs MSXML 3.0 in the side-by-side mode. This
mode does not replace the existing parser, so it assures that XML code written
for earlier parser versions will continue to work. For new Dynamic Authoring
Toolkit applications, you specify the MSXML 3.0 parser using version-depe-
nent progIDs.

If you don’t need to keep earlier parser versions, you can manually install
MSXML 3.0 in the replace mode. Replacing earlier parser versions with
MSXML 3.0 adds support for XSLT style sheets to the Microsoft Internet
Explorer 5. XSLT support is important because the Dynamic Authoring
Toolkit includes a style sheet (xdr-schema.xslt) that formats MWX and XDR
files for easier viewing. For more information about viewing the schema, see
“Viewing the Schema” on page 33.

The Dynamic Authoring Toolkit works with MSXML 3.0 installed in either
the side-by-side mode or replace mode. For more information about
installing MSXML 3.0 in the replace mode, see http://msdn.microsoft.com.

Understanding the Operating Environment

Autodesk MapGuide is a suite of software components that can create and
distribute intelligent map files, known as Map Window Files (MWF), over IP
networks. The following shows the components required to deliver maps.
18 | Chapter 2 Setting Up the Development Environment

This architecture includes the following types of software and data:

� Clients—Autodesk MapGuide Viewer
� Web server—Standard HTTP (Hypertext Transfer Protocol) server
� Application servers—Autodesk MapGuide Server and ColdFusion® Server
� Data servers and Data—Application-specific data sources

These components support map delivery only. Dynamic authoring systems
also require the Dynamic Authoring Toolkit. For more information, see
“Understanding the Development Environment” on page 21.

Clients

Autodesk MapGuide Viewer is the primary client for viewing and interacting
with dynamic maps. This small, fast, local client displays server-dispatched
vector and raster data directly in a Web browser.

There are three types of Autodesk MapGuide Viewer:

� Autodesk MapGuide® Viewer ActiveX Control for Microsoft® Internet
Explorer

� Autodesk MapGuide Viewer Plug-In for Netscape® Navigator
� Autodesk MapGuide Viewer, Java™ Edition for Windows,

Apple® Macintosh®, and Sun® Solaris® systems

These viewers include an Application Programming Interface (API) that you
can use to enhance the map delivered to the user. For example, you can use
this API in conjunction with the Dynamic Authoring Toolkit to create and
add a new layer to the displayed map.

Web Servers

Autodesk MapGuide Server accepts requests and delivers maps using one of
the following third-party HTTP servers:

� Netscape Enterprise Server 3.6 with Service Pack 3
� iPlanet Web Server Enterprise Edition 4.1 with Service Pack 8
� Microsoft Internet Information Server 4.0 (Windows NT)
� Microsoft Internet Information Server 5.0 (Windows 2000)

You use standard server features, such as Active Server Pages (ASP), when
authoring and delivering dynamic maps.
Understanding the Operating Environment | 19

Application Servers

Autodesk MapGuide Server works in conjunction with the Web server to
deliver MWFs to the end user. When a client browser requests an MWF, the
Web server sends the document, along with information about the MIME
type (application/x-mwf). If Autodesk MapGuide Viewer is present, it inter-
prets the MWF document and requests any additional data that is necessary
to complete the map. This request is made to the Autodesk MapGuide Server
MapAgent through a CGI, ISAPI, or NSAPI gateway at the Web server. The
MapAgent forwards the request parameters to the Autodesk MapGuide Server
Service through the NT Remote Procedure Call service (RPCSS). As Autodesk
MapGuide Server fulfills the request, the retrieved data is passed back to the
client through the Web server, using HTTP.

The Macromedia ColdFusion server is an optional component that supports
Web page scripting. The Web server automatically routes scripts with the
.cfm extension to the ColdFusion server for processing. You use ColdFusion
or ASP scripts to invoke the authoring components or build reports in a
dynamic authoring system.

Data Servers and Data Sources

Autodesk MapGuide Server can retrieve map and report information from a
variety of data sources. Some of these sources require a data server, such as an
OLE DB. You don’t create data sources with the Dynamic Authoring Toolkit,
but you modify MWF files, which may request data from these data sources.
20 | Chapter 2 Setting Up the Development Environment

Understanding the Development
Environment

The following illustration shows the development environment for dynamic
authoring.

The development environment includes all the components of the operating
environment, as shown in “Understanding the Operating Environment” on
page 18, plus the following additional components:

� Development applications
� Data utilities
� Document Object Model (DOM) data and editing tools
Understanding the Development Environment | 21

Development Applications

You use the following applications when authoring dynamic maps:

� Autodesk MapGuide® Author
� ColdFusion® Studio (optional)

Autodesk MapGuide Author is an essential tool for dynamic authoring.
Although you can create a map using only the Dynamic Authoring Toolkit,
it’s much easier to first build a template using the graphical user interface of
Autodesk MapGuide Author. Then, using a text editor, you create individual
XML files for layers and other map features.

ColdFusion Studio facilitates development of Web documents and scripts for
dynamic authoring. The code and Web development application you choose
varies by solution, programming language, and personal preferences. You
may prefer to develop dynamic authoring solutions using other Java or ASP
development tools.

Data Utilities

Autodesk MapGuide includes a suite of tools for working with different file
formats. This document focuses on the Dynamic Authoring Toolkit, which
converts between the MWX and MWF/MLF file formats. For more informa-
tion about the SDF Component Toolkit, SDF Loader, or Raster Workshop,
refer to the SDF Component Toolkit Help, SDF Loader Help, and Raster
Workshop Help.

DOM Data and Editing Tools

The Dynamic Authoring Toolkit primarily converts files between the MWF
and MWX formats. The MWX format conforms to the DOM standards, so
you can edit or enhance the maps using industry-standard tools. A common
parsing tool is Microsoft’s MSXML SDK. Using this SDK, you can alter and
validate XML files under program control.When creating a static library of
XML files for dynamic maps, you can use an XML editor such as HomeSite
from Macromedia Corporation. However, any text editor that can handle
large documents will suffice for static edits of XML documents.
22 | Chapter 2 Setting Up the Development Environment

Getting Started

After installing the Dynamic Authoring Toolkit, verify that it works correctly.
Start by verifying that the COM component and XML parser are working
properly by executing Example 3 (see “Common Applications” on page 10).
This example does not require Web components, but you should run it on
the Web host to verify your environment.

Now, you are ready to try dynamic authoring. An easy way to learn about
dynamic authoring is to try out the Web-based application examples. Each
example includes Help that describes its setup, usage, and operation in detail.
The Web-based examples access the public Autodesk MapGuide Server,
which contains the data sources that the sample maps require. To use your
own maps and data sources, you can adapt an application example to use an
Autodesk MapGuide Server for which you have authoring privileges.

After you are familiar with the examples, you are ready to start developing
your own dynamic authoring applications. This book describes the
authoring concepts you need to understand and provides code samples for
common authoring tasks.
Getting Started | 23

24

I

�

�

�

3
Developing an Application
n this chapter

Designing the application

Coding the application

Handling errors
The process of developing an application is unique to

each organization and project. A complex project may

include formal procedures for defining the requirements,

writing the code, and validating the results. A small

project may only require simple scripting and testing.

This chapter provides general guidelines for designing

and developing a dynamic authoring application.
25

Designing the Application

The process of designing a dynamic authoring application generally starts
with a clear understanding of the user requirements. It helps to write a
description of the problem you want to solve using the vocabulary of the
user’s industry. For example, an architect may need dynamic access to elec-
trical, plumbing, or structural information and reports about local building
codes.

Before you start writing code for an application, consider performing the
following optional tasks:

� Write a requirements specification that includes the problem statement
and a set of typical use cases. A use case explains what a program does, not
how it works. For example, an architect may request a map that provides
only structural and electrical information.

� Develop a user interface and write preliminary user documentation. This
helps solidify the user requirements before committing to program code.

� Model the application using an industry standard representation, such as
UML (Unified Modeling Language). A model shows the application’s
objects, such as XML DOM and MapWindowFile objects, and their relation-
ships with one another.

The following tasks are required:

� Identify the Autodesk MapGuide maps and corresponding data sources
that your application needs. These maps are the foundation on which you
create dynamic maps.

� Implement the code or script for your application. Dynamic authoring
code primarily modifies XML files and converts them to MWFs, which it
delivers to Autodesk MapGuide Viewer.

This guide describes the last task only.
26 | Chapter 3 Developing an Application

Coding the Application

After your design is complete, you are ready to start writing the code or script
for your application.

Choosing a Development Platform

The Dynamic Authoring Toolkit is a COM component that is compatible
with any development environment that supports COM automation.
Because COM is language neutral, you can write code using your favorite
programming language. Your development platform and the COM runtime
take care of the underlying COM architecture. This guide includes code
samples for Visual Basic, ColdFusion, and Active Server Pages.

Leveraging the Application Examples

Before implementing your code, check the Dynamic Authoring Toolkit appli-
cation examples. One of the examples may be similar to your application, or
may provide insights into using a particular programming or scripting
language.

To adapt these application examples to your solution, you need the appro-
priate code development tools and authoring privileges on your own
Autodesk MapGuide Server. In addition, you may need copies of the data
sources that the examples reference.
Coding the Application | 27

Handling Errors

A well-written script handles unsuccessful and failed operations gracefully.
Code that handles errors typically specifies what action to take when an error
occurs, sometimes redirecting program flow.

Some methods don’t raise an error when they fail, they simply return a result
code. For example, when the Load method of an XML Document object fails,
it returns the result of the operation. It’s up to the code or script to test for
that failure and handle it. Otherwise, unexpected behavior, or seemingly
unrelated errors, occur later in the script.

Scripting languages have limited error-handling features and the conditions
that generate errors differ from one language to another. This section identi-
fies a few key points about error handling for the supported languages.

Active Server Pages

VBScript in Active Server Pages supports basic in-line error handling with the
On Error Resume Next statement. This method lets you replace the default
error handler with a line of your own error-handling code. After you have
trapped and handled an error, you use the Clear method of the Err object
to clear the error information.

ColdFusion

ColdFusion scripting supports error handling with the CFTRY and CFCATCH
tags. When an error occurs for script within a CFTRY section, program flow
changes to the corresponding CFCATCH handler.

Visual Basic

Visual basic supports error handling with the OnError and Resume state-
ments. When an error occurs, the program executes the code segment named
in the OnError statement. On completion, the Resume statement defines
how to continue after the error. You retrieve the error code by calling
Err.Number (“Err” is the name of the standard Visual Basic error object).
28 | Chapter 3 Developing an Application

I

�

�

�

�

�

�

�

4
Working with XML
n this chapter

Using XML documents

Understanding the schema
structure

Using the schema

Editing XML documents

Validating XML documents

Converting file formats

Working with product
versions
This chapter explains basic XML concepts and describes

how to use the Dynamic Authoring Toolkit to convert

between MWF and MWX formats, validate MWX files,

and compress MWF and MLF files. It also introduces a

third-party XML parser that you can use to edit and vali-

date MWX files.
29

Using XML Documents

Extensible Markup Language (XML) is a meta-markup language that defines
a format for describing structured data. You use both XML and HTML in an
application. An XML document describes map features, such as layers and
reports, and an HTML page prompts for user input and displays the map in
a browser.

The Dynamic Authoring Toolkit and Autodesk MapGuide® Author can repre-
sent map files as XML documents. XML documents are easier to work with
than MWF files because you can edit them with standard text editors and
XML parsers. You need Autodesk MapGuide Author to edit MWF files
directly.

You can think of XML as an alternative to a complex API with methods that
modify MWF files directly. The XML alternative provides complete flexibility
in changing map properties, either individually or as entire structures, and
can be implemented with conventional server-side scripts.

In XML, you use stylesheets, such as Extensible Style Language Transforma-
tions (XSLT), to present the data in a browser. The Dynamic Authoring
Toolkit includes a style sheet that facilitates viewing the XML schema.

For more information about XML, refer to http://msdn.microsoft.com,
http://www.w3.org, or http://www.xml.org.
30 | Chapter 4 Working with XML

Understanding the Schema Structure

An MWX file describes an Autodesk MapGuide® map as a hierarchy of
elements and attributes, starting with the MapWindow element.

The following diagram shows an excerpt from the map hierarchy.

The hierarchy consists of a tree of elements and attributes. This partial hier-
archy shows the root element, MapWindow, and all its immediate children:

� GeneralProperties—The general map properties, such as name and size
� CoordinateSystem—The map origin, projection system, and units
� MapLayers—A list of layers the map contains
� MapLayerGroups—A list of map layer group
� Reports—A list of reports defined for the map
� ZoomGotos—A list of Zoom Gotos defined for the map
� PopupMenu—The popup menu definition
� Symbols—A list of feature symbols for Autodesk MapGuide® Viewer

MapWindow GeneralProperties

CoordinateSystem

MapLayers

MapLayerGroups
Reports
ZoomGotos
PopupMenu
Symbols

CSMap

TextLayer
PointLayer
PolylineLayer
PolygonLayer
RedlineLayer
GISDesignServerLayer
DWGLayer
RasterLayer
BufferLayer

Description
GroupCode
Projection
Datum
Ellipsoid

GeneralLayerProperties
TextLayerDataSources
TextLayerStyles
StaticLayerDataStream
Understanding the Schema Structure | 31

These elements can also contain sub-elements of their own, and so on
through the hierarchy. For example, the MapLayers element has sub-
elements that correspond to each layer type. Moving down the hierarchy,
each layer type has sub-elements that describe its general properties, data
sources, and so on. The layer hierarchy extends well beyond this diagram,
and can include style and theme definitions.

Each element may contain attribute values that you can change. To change
an attribute, you specify the path through the hierarchy, followed by the
attribute name. For example, TextLayerDataSources contains an attribute
called ServerURL. This is the attribute that describes the URL of the server
that supplies the TextLayer data.

You specify the ServerURL attribute as follows:

MapWindow/MapLayers/TextLayer/TextLayerDataSources/ServerURL

The entire structure for a map window file is defined by a schema,
MapWindowXMLSchema.xdr. For more information about the schema hier-
archy for specific map features, such as layers and styles, see “Authoring
Dynamic Maps” on page 43.

Using the Schema

The primary use of the schema is validation of XML files. However, it also
provides hierarchy information, along with element and attribute descrip-
tions that are useful when modifying map files.

Locating Schema Elements

The schema contains hundreds of elements and attributes, so finding the one
that applies to the map feature you want to change can be difficult. A good
way to locate specific elements is to add or change the desired map feature
using Autodesk MapGuide Author and save the map as an MWX file. You can
then associate map elements with map features by examining the file. Also,
the XML that Autodesk MapGuide Author creates shows you how to imple-
ment specific changes.
32 | Chapter 4 Working with XML

Viewing the Schema

The schema includes a style sheet that makes the file easier to read. By
default, the schema (MapWindowXMLSchema.xdr) and style sheet
(xdr-schema.xslt) are located in the following folder:

C:\Program Files\Autodesk\MapGuideDynamicAuthoringToolkit6\bin

To view the schema in a browser

1 Copy the schema and style sheet to your Web server. These files are
located in the /bin folder of the Dynamic Authoring Toolkit.

2 Launch a browser and enter the URL of the schema. For example:

http://www.myserver.com/schema/MapWindowXMLSchema.xdr

Note If you open the schema as a file, rather than a Web page, the hyperlinks
won’t work.

The following shows a sample of the schema display.

Note If you get an error message when displaying the schema, you may be
using MSXML in the side-by-side mode. For more information, see “MSXML
Parser Installation” on page 18.
Using the Schema | 33

Editing XML Documents

You can edit XML documents using one of the following tools:

� Text editor
� XML parser

Using a Text Editor

Because XML documents are in plain text, you can use any text editor to
change them. Editing XML documents manually is recommended only
when building a library of map templates and fragments that you later use to
create custom maps. For more information about libraries, see “Creating a
Map Library” on page 44.

Using an XML Parser

An XML parser can edit XML documents programmatically, which facilitates
the creation of dynamic maps. The Dynamic Authoring Toolkit includes the
Microsoft XML parser (MSXML). This parser is an in-process COM DLL
(Msxml3.dll) that is compatible with any development environment that
supports COM automation.

To learn about MSXML, refer to the XML Developers Guide and XML Reference
in Microsoft’s MSDN Online Library. Alternatively, you can view the methods
and properties of the DOMDocument30 object in the Object Browser of a
Visual Basic project. Make sure that you’ve included a reference to Microsoft
XML v3.0 in your Visual Basic project.

Working with Large MWX Files

Some editors or parsers may have problems with large files. The following
tips can help you avoid or handle this problem:

� Use dynamic map layers when possible. This avoids large static data
streams.

� Break large MWX files into smaller ones for different display ranges.

� Remove unused map layer symbols or preloaded symbols for the Autodesk
MapGuide Viewer API.

� Use the SAX (Simple API for XML) implementation when editing large
MWXs, if supported by your XML parser.
34 | Chapter 4 Working with XML

XML Parser Example

The following example shows how to use the Microsoft XML parser to
change the ServerURL attribute:

To use the EditMWX procedure, pass the name of the element you want to
change (Element), the new element value (ToString), and the MWX file name
(FileName) as arguments. For example, to change the ServerURL of a single
text layer, set the Element argument to the following value:

"MapLayers/TextLayer[GeneralLayerProperties[Name="textlayername"]]
/TextLayerDataSources/ServerURL"

To change the ServerURL for the data sources of all layers, except those in
groups, use wildcards for the Element value and specify the new URL:

Element = "MapLayers//*/ServerURL"
ToString = "http://www.myserver.com/MapGuide6/mapagent.exe"

where //* represents all nodes within the MapLayers node.

XML Parser Example

Function EditMWX(Element As String, ToString As String, FileName As
String)
 ’ declare an XML DOM object
 Dim MWXDoc As New DOMDocument30
 ’ declare a list of nodes for the selected element
 Dim NodeList As IXMLDOMNodeList
 ’ declare a single node for iterating through the list
 Dim Node As IXMLDOMNode
 ’ declare the path and file name to edit
 Dim MWXFile As String

 ’ initialize the DOM document
 MWXFile = "C:\DATdata\" + FileName + ".mwx"
 MWXDoc.Load (MWXFile)
 ’ select all nodes described by Element
 Set NodeList = MWXDoc.documentElement.selectNodes(Element)
 ’ point to the beginning of the list of nodes
 NodeList.Reset
 ’ loop through all the nodes and replace the value
 Dim i
 For i = 1 To NodeList.length
 Set Node = NodeList.nextNode
 Node.Text = ToString
 Next
 ’ Update the physical file
 MWXDoc.save MWXFile
End Function
Editing XML Documents | 35

The following XML fragment shows how this example changes the server
URL of the default Autodesk MapGuide map:

Validating XML Documents

Validating an XML document verifies that it conforms to the structure
defined in the XML schema. You can validate XML files the following ways:

� Using the Dynamic Authoring Toolkit
� Using a third-party XML parser

Validating Files Using the Dynamic Authoring
Toolkit

The ReadFromMwx method of the Dynamic Authoring Toolkit attempts to
validate a document when the ValidateMwx property is True. To success-
fully validate a document, all the following conditions must be satisfied:

� The schema file (MapWindowXMLSchema.xdr) is found in the bin folder of
the Dynamic Authoring Toolkit. The default path is:

C:\Program Files\Autodesk\MapGuideDynamicAuthoringToolkit6\bin

� The MapWindow element of the XML document being read references the
schema file. For example:
<MapWindow Version="6.0" CreatedBy="6.0.0.0 -
Autodesk MapGuide(R)Dynamic Authoring Toolkit"
xmlns="x-schema:MapWindowXMLSchema.xdr">

� The content of the MWX complies with the schema.

<MapLayers>
<PolygonLayer>

<PolygonLayerDataSources>
<SDPFeatureDataSource>
<DataSource>Sample_World_SDF</DataSource>
<FeatureTable>Sample_World_Countries</FeatureTable>
...
</SDPFeatureDataSource>
<ServerURL>http://www.myserver.com/MapGuide6/mapagent.exe

 </ServerURL>
</PolygonLayerDataSources>
...

New value
36 | Chapter 4 Working with XML

When the ValidateMwx property is False, ReadFromMwx ignores these
conditions and opens the MWX document using very limited internal
validation.

Note The Dynamic Authoring Toolkit performs both checking and validation
when ValidateMwx is True.

Validating Files Using a Parser

You can use DOMDocument properties and methods to validate an XML docu-
ment before invoking ReadFromMwx. To enable parser validation, set the
validateOnParse and resolveExternals properties of the DOMDocument
object to True. ValidateOnParse checks the file as an XML document; it
does not look at externals such as the schema file.

ResolveExternals validates the document using the schema, so copy
MapWindowXMLSchema.xdr from its default location to the folder that
contains the MWX file you are validating. If the validation fails, the
DOMDocument.load method returns False, and you can then use the
DOMDocument.parseError property to display the error.

Converting File Formats

The Dynamic Authoring Toolkit is a COM component that converts files
between the MWF and XML formats. This COM component is registered
with the operating system during the installation process.

To use the Dynamic Authoring Toolkit in a Visual Basic project, add a compo-
nent reference to the Dynamic Authoring Toolkit. In your code, create an
instance of the MapWindowFile class and use its methods and properties as
necessary.

When editing documents, you perform the following tasks:

� Convert the MWF files to MWX files
� Edit the MWX files, as necessary
� Convert the MWX files to MWF files

This section explains how to convert from one file format to another. For
more information about editing MWX files, see “Authoring Dynamic Maps”
on page 43.
Converting File Formats | 37

Converting from MWF to MWX

You use the following methods and properties of a MapWindowFile object
when converting files from MWF to MWX:

� ReadFromMwf method
� WriteToMwx method
� CharacterEncoding property

The ReadFromMwf method loads the map information into a
MapWindowFile object and the WriteToMwx method saves the map infor-
mation as an MWX file. Before writing the MWX, you can specify the char-
acter encoding you want to use.

Specifying the Character Encoding

The character encoding for an XML document is either UTF-16 or UTF-8.
UTF-16 may be more portable because it encodes characters in a two-byte
format that can easily accommodate any language. UTF-8 may be more effi-
cient because it encodes each character in a single byte, which is best suited
to European languages. The default value is mwfUtf-8.

Note Make sure the client browsers and XML development tools in your system
support the character formats you plan to use.

MWF to MWX Conversion Example

The following Visual Basic example shows how to read an MWF file, set its
character encoding, and save it as an MWX file:

MWF to MWX Conversion Example

Function ConvMWFtoMWX(FileName As String, Password As String,
Success As Boolean)
 ’ declare a new MapWindowFile object
 Dim MWFDoc As New MapWindowFile
 ’ declare mwf and mwx file names
 Dim MWFFile As String
 Dim MWXFile As String

 On Error GoTo MWFError
’ attempt to read in MWF
 MWFFile = "C:\DATdata\" + FileName + ".mwf"
 MWFDoc.ReadFromMwf MWFFile, Password
’ update properties
 MWFDoc.CharacterEncoding = mwfUtf8
’ attempt to write an MWX file
 MWXFile = "C:\DATdata\" + FileName + ".mwx"
38 | Chapter 4 Working with XML

To use this function, pass the file name of the MWF file you want to convert
and its password, if one is needed, as arguments. For example, to convert
World.wmf to World.mwx, use the following arguments:

FileName = "World"
Password = ""

The ConvMWFtoMWX function converts World.mwf to World.mwx and reports
the success or failure of the operation. If the function fails, you can check the
error number (Err.Number) and text description (Err.Description) for
details. For more information about error numbers and descriptions, see
“Error Codes” on page 95.

Converting from MWX to MWF or MLF

You use the following methods and properties of a MapWindowFile object
when converting files from MWX to MWF or MLF:

� ReadFromMwx method
� WriteToMwf or WriteToMlf methods
� ValidateMwx property
� CompressMwf or CompressMlf properties

The ReadFromMwx method loads the map information into a
MapWindowFile object and the WriteToMwf or WriteToMlf method saves
the map information as an MWF or MLF. Before reading an MWX you can
enable or disable validation, and before writing the MWF or MLF, you can
enable or disable compression. The WriteToMwf method automatically
updates the CreatedBy and Version properties.

When converting to MWF you can write either a file or a data stream. This
chapter emphasizes writing a file. For information about writing a data
stream, see “Returning Map Layers” on page 80.

 MWFDoc.WriteToMwx MWXFile
 Success = True
 Exit Function

’ error handler:
 MWFError:
 Success = False
End Function

MWF to MWX Conversion Example (continued)
Converting File Formats | 39

Validating MWX Files

Validation is the process of verifying that an XML document conforms to the
structure of the XML schema. The ReadFromMwx method attempts to vali-
date a document when the ValidateMwx property is True. For more infor-
mation about validation, see “Validating XML Documents” on page 36.

Compressing MWF and MLF Files

Compression reduces the size of MWF and MLF files, which speeds their
delivery to clients. This is important when transferring map files over a
public network where bandwidth is limited. When working locally over a fast
network, you can disable compression.

MWX to MWF Conversion Example

The following Visual Basic example shows how to read an MWX, set its
compression type, and save it as an MWF file:

MWX to MWF Conversion Example

Function ConvMWXtoMWF(FileName As String, Success As Boolean)
 ’ declare a new MapWindowFile object
 Dim MWFDoc As New MapWindowFile
 ’ declare mwf and mwx file names
 Dim MWFFile As String
 Dim MWXFile As String

 On Error GoTo MWFError
’ attempt to read the MWX file
 MWXFile = "C:\DATdata\" + FileName + ".mwx"
 MWFDoc.ReadFromMwx MWXFile
’ attempt to write an MWF file
 MWFFile = "C:\DATdata\" + FileName + ".mwf"
 MWFDoc.CompressMwf = False
 MWFDoc.WriteToMwf MWFFile
 Success = True
 Exit Function

’ error handlers:
 MWFError:
 Success = False
End Function
40 | Chapter 4 Working with XML

To use this function, pass the name of the MWX file you want to convert as
an argument. For example, to convert World.mwx to World.mwf, use the
following argument:

FileName = "World"

The ConvMWXtoMWF function converts World.mwx to World.mwf and reports
the success or failure of the operation. If the function fails, you can check the
error number (Err.Number) and text description (Err.Description) for
details. For more information about error numbers and descriptions, see
“Error Codes” on page 95.

MWX to MLF Conversion Example

Some applications need to work with layers rather than the whole map. In
such cases, you can use the WriteToMlf method instead of the WriteToMwf
method.

The following Visual Basic example shows how to read an MWX and save its
World Countries layer as an MLF file:

MWX to MLF Conversion Example

Function ConvMWXtoMLF(FileName As String, GroupName As String,
LayerName As String, Success As Boolean)
’ declare a new MapWindowFile object
 Dim MWFDoc As New MapWindowFile
’ declare mwf and mwx file names
 Dim MLFFile As String
 Dim MWXFile As String
 On Error GoTo MLFError

’ attempt to read the MWX file
 MWXFile = "C:\DATdata\" + FileName + ".mwx"
 MWFDoc.ReadFromMwx MWXFile
’ attempt to write an MWF file
 MLFFile = "C:\DATdata\" + FileName + ".mlf"
 MWFDoc.WriteToMlf MLFFile, GroupName, LayerName
 Success = True
 Exit Function

’ error handlers:
 MLFError:
 Success = False
End Function
Converting File Formats | 41

To use this function, pass the file name of the MWX file you want to convert,
the group name, and layer name as arguments. For example:

FileName = "World"
GroupName = ""
LayerName = "World Countries"

The GroupName is a null string because the layer does not belong to a group.
The ConvMWXtoMLF function reads the MWX file, saves the World Countries
layer to an MLF, and reports the success or failure of the operation.

Working with Product Versions

This section explains the CreatedBy and Version properties.

CreatedBy

Autodesk MapGuide Author and the Dynamic Authoring Toolkit set the
CreatedBy property as follows when writing MWF or MWX files:

� N.N.N.N—Autodesk MapGuide Dynamic Authoring Toolkit
� N.N.N.N—Autodesk MapGuide Author

where N.N.N.N is the product version number

This information can be useful when troubleshooting file conversion
problems.

Version

The Version property identifies the latest version of the Dynamic Authoring
Toolkit or Autodesk MapGuide Author that can open the MWF.

The Version property is important when the version of the application or
toolkit is different from the version of the MWF being opened. For example,
you may want to warn users before converting MWF files from one version
to another. The Dynamic Authoring Toolkit only opens MWF files created
with matching or earlier versions of Autodesk MapGuide Author or the
Dynamic Authoring Toolkit.
42 | Chapter 4 Working with XML

I

�

�

5
Authoring Dynamic Maps
n this chapter

Creating a map library

Customizing maps
You often build a dynamic map from a library of map

components, such as layers and themes, that you assem-

ble, modify, and deliver using Web page scripts. This

chapter focuses on dynamic map creation, explaining

how to prepare a map library, combine map components,

and modify map features.
43

Creating a Map Library

A system that constructs dynamic maps usually draws from a library of map
templates and components, such as layers, menus, Zoom Gotos, and reports.
You create this library in advance using Autodesk MapGuide® Author and a
text editor. This library can be a collection of flat files or can reside in a data-
base. The way you store files is specific to your application.

Creating Map Templates and Composites

A map template, or base map, often has no layers, menus, Zoom Gotos, or
reports. You create your custom maps by starting with a template, which
always defines the map coordinate system and general map properties, and
sometimes includes a background layer, such as World Countries.

A map composite is one that contains all layers, menus, Zoom Gotos, and
reports you plan to use. You edit this composite to create a library of map
components that you can later add dynamically.

To create template and composite map files

1 Identify a map that contains all the layers, menus, Zoom Gotos, and
reports that you plan to use.

2 Open the MWF file for the map using Autodesk MapGuide Author.

3 Enable all layers and features.

4 Save the map as an MWX file. This is the composite map file.

5 Delete the layers, menus, Zoom Gotos, and reports that you plan to add
dynamically.

6 Save the file as an MWX file. This is the template map file.

You should create a unique template for each coordinate system you plan to
use. Although you can edit coordinate system information dynamically, it’s
an advanced task that you must perform carefully. For more information
about editing coordinate systems, see “Working with Coordinate Systems”
on page 46.

Creating a Library of Map Components

Map components are XML segments that define layers, menus, Zoom Gotos,
and reports. For map layers, these map components may include theme and
symbol definitions. You extract map components from the composite map
that contains all layers, menus, Zoom Gotos, and reports you plan to use.
44 | Chapter 5 Authoring Dynamic Maps

To create map components

1 Using a standard text editor, open the composite MWX file.

2 Extract the desired map component from the MWX file, such as the
popup menu definition.

3 Add an XML header:

<?xml version="1.0" encoding="UTF-8"?>

4 Save the document with a descriptive name.

The following map component describes a popup menu with two menu
items, Print and About Autodesk MapGuide:

<?xml version="1.0" encoding="UTF-8"?>
<PopupMenu Name="Popup Menu">
 <PopupMenu Name="&Print">
 <MenuItem Name="Pa&ge Setup..." Action="10"/>
 <MenuItem Name="&Print Map..." Action="11"/>
 </PopupMenu>
 <MenuSeparator/>
 <MenuItem Name="&About Autodesk MapGuide..." Action="800"/>
</PopupMenu>

Note If you use the MWX extension for map component files, remember that
they are only excerpts from a valid MWX file that you cannot open in Autodesk
MapGuide Author.

You can view a library of map templates and components by examining the
MwxTemplates folder of Example 1, which is installed with the Dynamic
Authoring Toolkit. There are four template files:

� WGS84.mwx
� World_LM_Conic.mwx
� World_Mercator.mwx
� World_Miller.mwx

In addition, there are three layer components:

� USInterstates.mwx—A polyline layer component
� USStates.mwx—A polygon layer component
� WorldCities.mwx—A point layer component

These layer files are XML segments that are added dynamically to the
MapLayers node of a map template at run time.
Creating a Map Library | 45

Customizing Maps

This section explains how to customize map features by modifying MWX
files.

Working with Coordinate Systems

A coordinate system defines how Autodesk MapGuide Server displays map
information. This definition includes the map origin, projection system, and
measurement units. Because coordinate system parameters are complex and
varied, you should not attempt to change them unless you have extensive
knowledge about the standards that pertain to map coordinate and projec-
tion systems.

Instead of modifying individual coordinate system elements, you generally
use Autodesk MapGuide Author to create one or more map templates, or base
maps, that include the desired coordinate system information. These base
maps are then the foundation on which you add other map features, such as
layers and themes.

Identifying Coordinate System Elements

The following diagram shows how to identify the coordinate system and its
major properties in the schema hierarchy.

Using a Base Map

Selecting and loading a base map is usually the first step in creating a
dynamic map. A multi-pane application may initially display the base map
in one frame and selection controls in another. As users request map content
from the selection control pane, the system authors new content and
updates the map pane.

CSMapCoordinateSystemMapWindow Description
GroupCode
Projection
Datum
Ellipsoid
46 | Chapter 5 Authoring Dynamic Maps

The following VBScript example reads the base map from an MWX file and
sends it to the browser as a MWF data stream:

<%@ LANGUAGE="VBSCRIPT" %>
<%
’ Create a FileSystemObject for files and folders
Set fso = CreateObject("Scripting.FileSystemObject")
’
’
’ Create the path and filename for the base map.
currentFile = Request.ServerVariables("PATH_TRANSLATED")
currentDir = Left(currentFile, InstrRev(currentFile, "\"))
MWXDir = currentDir + "MWXTemplates\"

baseMWXFile = MWXDir + "USABaseMap.mwx"
’
’ Create a MapWindowFile object to read MWX file
Set mwfDoc = Server.CreateObject("Autodesk.MapWindowFile")
mwfDoc.ValidateMwx = FALSE
mwfDoc.CompressMwf = FALSE
’
’ Load the MWX file into the MapWindowFile object
mwfDoc.ReadFromMwx(baseMWXFile)
’
’ Return the binary MWF information
Response.Expires = -1
Response.Buffer = TRUE
Response.ContentType = "application/x-mwf"
Response.BinaryWrite(mwfDoc.WriteToMwfStream())
Response.End
%>

Working with Layers and Layer Groups

Layers are the foundation for many map features, from country outlines to
themes and styles. This section focuses on working with the layer as a whole
and changing its general properties.

Identifying Layer Elements

The hierarchy of map elements supports map layers with the following
elements:

� MapLayers—A list of individual layers
� MapLayerGroups—A list of layers with common properties

In either case, the layers in these lists have a common structure and can
contain identical properties.
Customizing Maps | 47

The following diagram shows how to identify a map layer and its general
properties in the schema hierarchy.

The following diagram shows how a map with groups can have MapLayers
collections at two levels.

The MapLayers element under the root element is the same as the previous
diagram. The MapLayers element under the MapLayerGroup element
contains layers that belong to a map group. The MapLayerGroup element
contains the group name and information about its visibility and legend
characteristics.

Adding a Layer

Because layers can include a complex set of map specifications, it is often
useful to add a predefined layer to a map, rather than building one dynami-
cally. Starting with a base map, you can dynamically add predefined layers
from a library of XML files. For more information about libraries, see
“Creating a Map Library” on page 44.

To add a map layer

1 Create a DOMDocument object and load the base map.

2 Create another DOMDocument object and load the layer.

3 Select the MapLayers node of the base map.

4 Select the root node of the layer.

TextLayer
PointLayer
PolylineLayer
PolygonLayer
BufferLayer
RedlineLayer
GISDesignServerLayer
DWGLayer
RasterLayer

MapLayersMapWindow GeneralLayerProperties
...

TextLayer
PointLayer
PolylineLayer
PolygonLayer
BufferLayer
RedlineLayer
GISDesignServerLayer
DWGLayer
RasterLayer

MapLayerGroups
MapLayers

MapWindow MapLayerGroup MapLayers

Individual Layers Grouped Layers
48 | Chapter 5 Authoring Dynamic Maps

5 Append the root node of the layer to the MapLayers node.

6 Save the updated DOMDocument to a new file.

The following ColdFusion example shows how to open a base map named
WGS84.MWX and add a layer named WorldCities.MWX:

<!--- Declare base map and layer file variables --->
<cfset MwxDirectory = "MWXTemplates">
<cfset BaseMapMwx = "WGS84.mwx">
<cfset BaseMapPath = #expandpath("#MwxDirectory#\#BaseMapMwx#")#>
<cfset WorldCitiesMwx = "WorldCities.mwx">
<cfset LayerPath = #expandPath("#MwxDirectory#\#WorldCitiesMwx#")#>

<!--- Create a Microsoft XMLDOM object and load the base map --->
<cfobject type="COM" name="DynamicMapDoc"
class="Msxml2.DOMDocument" action="create">
<cfset DynamicMapDoc.async = false>
<cfset IsLoaded = DynamicMapDoc.load(#BaseMapPath#)>

<!--- Create a temporary XMLDOM object and load the layer --->
<cfobject type="COM" name="TempMwxDoc" class="Msxml2.DOMDocument"
action="create">
<cfset TempMwxDoc.async = false>
<cfset IsLoaded = TempMwxDoc.load(#LayerPath#)>

<!--- Select the MapLayers node of the base map --->
<cfset BaseMapRootNode = DynamicMapDoc.documentElement>
<cfset MapLayerNode =
BaseMapRootNode.selectSingleNode("MapLayers")>
<!--- Select the root node in the layer document --->
<cfset DocElem = TempMwxDoc.documentElement>
<!--- Append the node to the MapLayer node--->
<cfset NewLayerNode = MapLayerNode.appendChild(DocElem)>

<!--- Create a file name and save the new MWX file --->
<cfset MwxFilename= "DynamicMap.mwx">
<cfset MwxFilepath = #expandPath("#MWXFileName#")#>
<cfset DynamicMapDoc.Save(#MwxFilepath#)>

This example creates a new file, DynamicMap.mwx, which contains the base
map and new layer. To convert this map to an MWF, you use the Dynamic
Authoring Toolkit. For more information about using the utility, see
“Converting from MWX to MWF or MLF” on page 39.

Adding a Layer to a Group

Adding a layer to a group is similar to adding an ungrouped layer. Simply
select the desired MapLayers node under the MapLayerGroup node, rather
than under the MapWindow node, and append the layer.
Customizing Maps | 49

Saving a Layer as an MLF

Because the Autodesk MapGuide Viewer API includes methods for adding
layers to maps, you may prefer to save a single layer as an MLF file or data
stream. To save a layer, use the WriteToMlf or WriteToMlfStream method
of the Dynamic Authoring Toolkit. For more information about using these
methods, see “MWX to MLF Conversion Example” on page 41.

Changing General Layer Properties

Each layer includes the following set of general attributes that control the
way it’s displayed in Autodesk MapGuide® Viewer:

� Name
� Visible
� LegendLabel
� ShowInLegend
� DrawPriority
� Selectable
� Static

The Static attribute identifies a layer that loads as a data stream in Autodesk
MapGuide Viewer. A data stream (StaticLayerDataStream) contains binary
data that you should not modify. You can change a layer from static to non-
static by setting the Static element to 0 and removing the StaticLayerData
Stream or StaticRasterLayerDataStream element, but not the reverse.

To change an attribute, select the desired node and change its value. The
following ColdFusion example shows how to change the legend label of a
polygon layer:

<cfset Element =
"MapLayers/PolygonLayer/GeneralLayerProperties/LegendLabel">
<cfset BaseMapRootNode = DynamicMapDoc.documentElement>
<cfset NameNode = BaseMapRootNode.selectSingleNode(#Element#)>
<cfif NameNode.text EQ "World Countries">

<cfset NameNode.text = "Land Masses">
</cfif>

This code finds the first polygon layer and changes the legend label from
World Countries to Land Masses. For more information about writing
the support code for this example, see “Adding a Layer” on page 48.
50 | Chapter 5 Authoring Dynamic Maps

Controlling Layer Access

You can control access to entire layers, layer geometry, and layer setup. The
following attributes control this feature:

� Password—The password required to view the layer, if any

� AccessGeometry and AccessGeometryPasskey—The control and pass-
key for access by Autodesk MapGuide Viewer API to layer geometry

� AccessLayerSetupAPI and AccessLayerSetupAPIPasskey—The control
and passkey for access by Autodesk MapGuide Viewer API to layer setup

When access control is enabled, the MWX file includes the appropriate pass-
word or passkey. Because passwords and passkeys are encrypted, you should
not attempt to add or modify them in the XML document; use Autodesk
MapGuide Author instead.

Working with Data Sources

An Autodesk MapGuide® map retrieves spatial and attribute data from an
Autodesk MapGuide® Server data source. Maps use data sources for the
following map characteristics:

� Map spatial data and attributes
� Theme attributes for point, polygon, and polyline layers
� Zoom Goto attributes

An Autodesk MapGuide Server administrator names these data sources and
initializes their properties. The map itself references the data source by name
and includes table and query information necessary to retrieve the data.

Identifying Layer and Zoom Goto Data Sources

Map layers access the following types of data sources:

� OLEDBFeatureDataSource—A standard OLE database
� SDPFeatureDataSource—A standard spatial data provider database
� DWGFeatureDataSource—The Autodesk DWG format
� GISDesignServerTheme—The Autodesk GIS Design Server format

You can also link map features to secondary database tables, thereby avoiding
unnecessary views or tables in the database. Secondary tables may contain
look-up tables or columns used to filter spatial information such as land use
or population.
Customizing Maps | 51

The following diagram shows the hierarchy for data sources for different map
layer types and the Zoom Goto feature.

Note Buffer and redline layers do not reference data sources.

Identifying Theme Data Sources

Point, polygon, and polyline layers can include themes that reference their
own data sources. The following diagram shows the hierarchy for theme data
sources.

The data source name and its query are within the PointThemeProperties,
PolygonThemeProperties, and PolylineThemeProperties elements, along
with other general theme information.

OLEDBFeatureDataSource (or)
SDPFeatureDataSource or
SecondaryDataSource

TextLayerDataSourceTextLayerDataSources

OLEDBFeatureDataSource or
SDPFeatureDataSource or
SecondaryDataSource

PointLayerDataSources

SDPFeatureDataSource
SecondaryDataSource

PolygonLayerDataSources

SDPFeatureDataSource
SecondaryDataSource

PolylineLayerDataSources

GISDesignServerThemeGISDesignServerLayerDataSources

DWGFeatureDataSourceDWGLayerDataSources

DataFileRasterLayerDataSources

DataSourceZoomGotoDataSources

PointLayerStylePointLayerStyles

PolygonLayerStyles

PolylineLayerStyles

PointThemeProperties

PolygonLayerStyle PolygonThemeProperties

PolylineLayerStyle PolylineThemeProperties

PointLayer

PolygonLayer

PolylineLayer
52 | Chapter 5 Authoring Dynamic Maps

Interpreting Data Source Specifications

Data source specifications vary by the data source type and use, but they have
a number of common attributes. The following table lists the common
attributes by data source type:

As the table shows, all data sources have a name, Datasource, a table identi-
fier, and key column information. The data sources for layers also describe
feature name and URL information, and may include a SQL Where clause or
LayerFilter for filtering the results.

Data sources also include specifications that are specific to the data source
and layer type. For example, an OLE database includes latitude and longitude
columns, an SDP data source specifies the geometry column, a theme data
source specifies the theme value column, and so on.

Each layer includes the URL of the server that serves the data source. To move
a map from one server to another, you change the ServerURL property.

Data Source Attributes by Data Source Type

OLEDB SDP DWG Secondary Theme
Properties

Datasource Datasource Datasource Datasource Datasource

FeatureTable FeatureTable DWG Table Table

KeyColumn KeyColumn KeyColumn KeyColumn KeyColumn

KeyColumnType KeyColumnType KeyColumnType

NameSource NameTable

NameColumn NameColumn NameColumn

URLSource URLTable

URLColumn URLColumn URLColumn

SQLWhereClause SQLWhereClause LayerFilter
Customizing Maps | 53

Changing Data Source Attributes

Changing data source attributes is a good way to alter the appearance or
behavior of a whole layer or set of map features. The following list summa-
rizes a few practical uses for data source attribute changes:

� Change the map tips by updating the NameColumn attribute of an SDP
or OLE DB data source

� Filter the displayed map features by updating the SQLWhereClause
or LayerFilter of a DWG layer

� Change all symbol or text styles on a layer by updating the table column
attribute of its OLE DB data source, such as the TextHeightColumn or
SymbolWidthColumn

Working with Styles

Styles enhance the visual attributes of a layer and its features. A layer has at
least one style: a symbol for point layers, text for text layers, a line style for
polyline layers, and a fill style for polygon layers.

Most map layers have one set of style attributes that apply whenever the
layer is visible. More complex layers have additional styles, each of which
apply over a particular display range. For example, on layers showing major
roads, it might be useful to use three style sets, each for a different display
range, so that the roads are drawn with heavier line styles as magnification
increases. In terms of dynamic maps, you might add a style to emphasize
roadways when a user requests specific road information.

Themes provide a mechanism for changing styles using factors other than
display range. For example, on layers showing major cities, it could be useful
to use a theme with three categories, each for a different range of population,
so that cities of different populations are drawn in different colors. For more
information about themes, see “Working with Themes” on page 58.
54 | Chapter 5 Authoring Dynamic Maps

Identifying Style Elements

The following diagram shows how to identify style elements in the schema
hierarchy.

Each layer has a collection of styles that contain one or more individual
styles. For example, a point layer has a PointLayerStyles collection with one
or more PointLayerStyle elements.

Styles can be static, such as a fill color, or themed according to values in a
data source. The following diagram expands the PointLayerStyle element to
show the style elements and attributes for a point layer.

Each style element specifies a display range and includes layer-specific
feature attributes. A style is applied to map features when the zoom scale falls
within the display range. For a point layer, the style attributes define the
symbol to use and include its static data stream. The specific style elements
vary by layer type. Refer to the schema file for style definitions for other layer
types.

TextLayer
PointLayer
PolylineLayer
PolygonLayer
BufferLayer
RedlineLayer
GISDesignServerLayer
DWGLayer
RasterLayer

MapLayersMapWindow TextLayerStyles
PointLayerStyles
...

TextLayerStyle
PointLayerStyle
...

SymbolName
SymbolWidth
SymbolHeight
SymbolRotation
MaintainAspectRatio
SymbolStyleOverrides
SymbolDataStream

PointStyle
MinDisplayRange
MaxDisplayRange
SizeUnits
PointLabels

PointLayerStyle
Customizing Maps | 55

Adding a Style

Because styles apply to a specific display range, adding a style may require
resizing existing ranges. To add a style to a layer with one style, you reduce
the display range of the existing style and add a new style that restores the
full display range.

This example shows how to add a style that displays roads more clearly at
higher magnification values. The following XML excerpt shows the style
definition:

<PolylineLayerStyle>
<MinDisplayRange>100000</MinDisplayRange>
<MaxDisplayRange>500000</MaxDisplayRange>

<PolylineStyle>
<LineStyle>Solid</LineStyle>
<LineColorIndex>6</LineColorIndex>
<LineThickness>8</LineThickness>

</PolylineStyle>

<PolylineStyle>
<LineStyle>Solid</LineStyle>
<LineColorIndex>4</LineColorIndex>
<LineThickness>6</LineThickness>

</PolylineStyle>

<PolylineStyle>
<LineStyle>Dot</LineStyle>
<LineColorIndex>1</LineColorIndex>
<LineThickness>1</LineThickness>

</PolylineStyle>
</PolylineLayerStyle>

This PolylineLayerStyle style is a composite of three PolylineStyle elements,
a black roadway, a dotted centerline, and a yellow outline. This style was
created in Autodesk MapGuide Author, extracted with a text editor, and
saved as a file, Style.mwx.
56 | Chapter 5 Authoring Dynamic Maps

The following VBScript example shows how to add this style to the polyline
layer for roads and adjust the display range of the existing style:

Adding a Style

<%@ LANGUAGE="VBSCRIPT" %>
<%
’ Create an XML DOM Object for the base document and roads layer
Set roadsLayerDoc = Server.CreateObject("Microsoft.XMLDOM")
roadsLayerDoc.async = False
roadsLayerDoc.load(Server.MapPath("MWXTemplates/RoadsMapLayer.mwx"
))
Set rootMapElem = roadsLayerDoc.documentElement
’
’ Select the PolylineLayer that contains the roads
mapLayerNode = "MapLayers"
Set mapLayerElem = rootMapElem.selectSingleNode(mapLayerNode)
layerNode =
"PolylineLayer[GeneralLayerProperties[Name=""Roads""]]"
Set roadLayerElem = mapLayerElem.selectSingleNode(layerNode)
’
’ Select the PolylineLayerStyles node for roads
stylesNode = "PolylineLayerStyles"
Set stylesElem = roadLayerElem.selectSingleNode(stylesNode)
’
’ Update the minimum display range of the original style
styleNode = "PolylineLayerStyle"
Set styleElem = stylesElem.selectSingleNode(styleNode)
Set minStyleElem = styleElem.selectSingleNode("MinDisplayRange")
minStyleElem.text = 500001
’
’ Create an XML DOM object for the new road style
Dim xmlAddStyleDoc
Set xmlAddStyleDoc = Server.CreateObject("Microsoft.XMLDOM")
xmlAddStyleDoc.async = False
’
’ Append the enhanced roadway style from a template
xmlAddStyleDoc.load(Server.MapPath("MWXTemplates/Style.mwx"))
Set rootStyleElem = xmlAddStyleDoc.documentElement
Set newStyleElem = stylesElem.appendChild(rootStyleElem)
’
’ Set the display range of the new style
low = 0
high = 500000
Set minStyleElem = newStyleElem.selectSingleNode("MinDisplayRange")
minStyleElem.text = round(low)
Set maxStyleElem = newStyleElem.selectSingleNode("MaxDisplayRange")
MaxStyleElem.text = round(high)
roadsLayerDoc.save(temp.mwx)
%>
Customizing Maps | 57

When the display range is between 50001 and 100000, roads are displayed as
a solid black line. For display ranges between 1 and 50000, the roads are
displayed as a white dashed line within a black line.

Working with Themes

Themes apply styles to map features according to data categories. A typical
theme for a point layer displays retail store locations with a different symbol
for each type of store. A polygon layer theme might display land usage with
a different color or shading for each classification.

Identifying Theme Elements

The following diagram shows how to identify point themes, categories, and
styles in the schema hierarchy.
58 | Chapter 5 Authoring Dynamic Maps

As the diagrams show, a theme extends the style hierarchy to include a
collection of categories, each of which has its own style and display range
definition. Note that the PointStyle element is further down the hierarchy
for a theme-based style, where it applies to a theme category rather than the
whole layer. The theme properties also includes details about the data source
that controls how the theme styles are applied. To view the root hierarchy for
themes, see “Working with Styles” on page 54.

Adding Themes

The easiest way to add themes to a map is to start with a base map that
includes the entire hierarchy for themes except for the theme categories. You
then add and customize theme categories dynamically, starting from a theme
category template. The first theme category is the default category that is
displayed at the end of the category list in Autodesk MapGuide Viewer. Typi-
cally, this theme captures all values outside the range of other theme catego-
ries. For example, a theme that categorizes cities by population might have a
default category for all populations greater than the highest limit for theme
categories.

PointThemeProperties
MinDisplayRange
MaxDisplayRange
SizeUnits
PointLabels

PointLayerStyle PointThemeCategories
DataSource
Table
KeyColumn
ThemeValueColumn
ThemeValueColumnType
ExpandInLegend

PointStyle
LegendLabel
ThemeValue
MinThemeValue
MaxThemeValue

PointThemeCategory SymbolName
SymbolWidth
...
Customizing Maps | 59

To add theme categories

1 Create a DOMDocument object and load the base map.

2 Create another DOMDocument object and load the theme category.

3 Select the PointThemeCategories node of the base map object.

4 Select the root node of the theme category (PointThemeCategory).

5 Append the PointThemeCategory node to the PointThemeCategories
node of the base map.

6 Update the theme label, range, and other properties, as necessary.

7 Repeat steps 2 through 6 for other theme categories.

8 Save the updated DOMDocument to a new file.

The following VBScript example adds two theme categories to the cities layer
of a base map:

Adding Theme Categories

<%@ LANGUAGE="VBSCRIPT" %>
<%
’ Create an XML DOM Object for the base document and city layer
Set citiesLayerDoc = Server.CreateObject("Microsoft.XMLDOM")
citiesLayerDoc.async = False
citiesLayerDoc.load(Server.MapPath("MWXTemplates/UsaCitiesMapLayer
.mwx"))
’
’ Set a variable to point to the root element of the XML DOM
Set rootMapElem = citiesLayerDoc.documentElement
’
’ Select the point layer that contains the cities
mapLayerNode = "MapLayers"
Set mapLayerElem = rootMapElem.selectSingleNode(mapLayerNode)
layerNode = "PointLayer[GeneralLayerProperties[Name=""Cities by
Population""]]"
Set citiesThemeElem = mapLayerElem.selectSingleNode(layerNode)
’
’ Select the PointThemeCategories node for theme addition
pointLayerNode = "PointLayerStyles/PointLayerStyle/"
themeCatNode = pointLayerNode +
"PointThemeProperties/PointThemeCategories"
Set themeCatElem = citiesThemeElem.selectSingleNode(themeCatNode)
60 | Chapter 5 Authoring Dynamic Maps

’
’ Create an XML DOM object for theme categories
Dim xmlAddThemeDoc
Set xmlAddThemeDoc = Server.CreateObject("Microsoft.XMLDOM")
xmlAddThemeDoc.async = False
’
’ Add a default theme category to the layer
xmlAddThemeDoc.load(Server.MapPath("MWXTemplates/ThemeLayer.mwx"))
Set rootThemeElem = xmlAddThemeDoc.documentElement
Set newThemeElem = themeCatElem.appendChild(rootThemeElem)
’
’ Add a new theme category to the layer
xmlAddThemeDoc.load(Server.MapPath("MWXTemplates/ThemeLayer.mwx"))
Set rootThemeElem = xmlAddThemeDoc.documentElement
Set newThemeElem = themeCatElem.appendChild(rootThemeElem)
’
’ Set the range of the theme category
low = 0
high = 30000 - 1
Set minThemeElem = newThemeElem.selectSingleNode("MinThemeValue")
minThemeElem.text = round(low)
Set maxThemeElem = newThemeElem.selectSingleNode("MaxThemeValue")
MaxThemeElem.text = round(high)
’
’ Set legend label to indicate the range of the theme
Set legendLabelElem = newThemeElem.selectSingleNode("LegendLabel")
legendLabelElem.text = round(low) & " to " & round(high)
’
’ Select the SymbolStyleOverrides node to change the symbol color
styleNode = "PointStyle/SymbolStyleOverrides"
Set styleElem = newThemeElem.selectSingleNode(styleNode)
’ Set the fill color and the edge color of the symbol
Set fillColorElem = styleElem.selectSingleNode("FillColorIndex")
fillColorElem.text = 16
Set edgeColorElem = styleElem.selectSingleNode("EdgeColorIndex")
edgeColorElem.text = 16
citiesLayerDoc.save(temp.mwx)
%>

Adding Theme Categories (continued)
Customizing Maps | 61

Using the MWX templates of Example 2 in the Dynamic Authoring Toolkit,
this code produces the following display in Autodesk MapGuide Viewer.

This example demonstrates the concepts of dynamic themes using two fixed
themes. For a more detailed example, see Example 2 in the Dynamic
Authoring Toolkit.

Working with Symbols

Symbols are typically icons that mark a point on a map. These symbols often
suggest the type of point or its usage. MWF files contain the following types
of symbols:

� Symbols associated with points
� Symbols preloaded for use by the Autodesk MapGuide Viewer API

A point layer can use a single symbol for all points, or it can apply a different
symbol to each point theme. The SymbolDataStream element, which defines
the symbol, contains a data stream created by Autodesk MapGuide Author
that you should not modify.

For a small number of preloaded symbols, simply include all of them in the
MWF. In a large system, you might dynamically deliver a set of symbols for
a particular application, such as garden plants or city landmarks. Users subse-
quently add these symbols to markup layers using applications written for
the Autodesk MapGuide Viewer API.
62 | Chapter 5 Authoring Dynamic Maps

Identifying Symbol Elements

Symbols are usually style or theme elements within the hierarchy of a point
layer. For more information about the hierarchy, see “Working with Styles”
on page 54 and “Working with Themes” on page 58. Preloaded symbols are
in the root of the schema hierarchy under the Symbols element.

Changing Symbols

You can change symbols dynamically to emphasize or clarify points on the
layer. You work with symbols dynamically by drawing from a library of Point-
Style files.

To change a symbol

1 Create an XML DOM object and load the base map with the cities layer.

2 Create another XML DOM object and load the star symbol. This is the star
PointStyle.

3 Select the PointStyle node of the base map.

4 Select the root node of the star PointStyle.

5 Replace the PointStyle node of the base map with the star PointStyle.

This example shows how to change the symbol a theme uses from the default
to a star. It uses the following XML fragment, which is the PointStyle defini-
tion for a star symbol:

Star PointStyle Example

<PointStyle>
<SymbolName>Stars - Black</SymbolName>
<SymbolWidth>0.002</SymbolWidth>
<SymbolHeight>0.002</SymbolHeight>
<SymbolRotation>0</SymbolRotation>
<MaintainAspectRatio>1</MaintainAspectRatio>
<SymbolStyleOverrides>

<TextColorIndex>1</TextColorIndex>
<LineColorIndex>1</LineColorIndex>
<FillColorIndex>1</FillColorIndex>
<EdgeColorIndex>1</EdgeColorIndex>

</SymbolStyleOverrides>
<SymbolDataStream>
Customizing Maps | 63

This symbol was created in Autodesk MapGuide Author, extracted with a text
editor, and saved as a file (Star.mwx). The following VBScript example shows
how to replace the default symbol with the star symbol:

<%@ LANGUAGE="VBSCRIPT" %>
<%
’ Create an XML DOM Object for the base document and city layer
Set citiesLayerDoc = Server.CreateObject("Microsoft.XMLDOM")
citiesLayerDoc.async = False
citiesLayerDoc.load(Server.MapPath("MWXTemplates/UsaCitiesMapLayer
.mwx"))
’
’ Set a variable to point to the root element of the XML DOM
Set rootMapElem = citiesLayerDoc.documentElement
’
’ Select the point layer that contains the cities
Set mapLayerElem = rootMapElem.selectSingleNode("MapLayers")
layerNode = "PointLayer[GeneralLayerProperties[Name=""Cities by
Population""]]"
Set citiesThemeElem = mapLayerElem.selectSingleNode(layerNode)
’
’ Select the default PointThemeCategories node
pointThemeProperties =
"PointLayerStyles/PointLayerStyle/PointThemeProperties/"
themeCatNode = pointThemeProperties +
"PointThemeCategories/PointThemeCategory"
Set newThemeElem = citiesThemeElem.selectSingleNode(themeCatNode)
’
’ Select the point style node to change
styleNode = "PointStyle"
Set styleElem = newThemeElem.selectSingleNode(styleNode)

’ Create an XML DOM object for the symbol object
Dim xmlAddSymbolDoc
Set xmlAddSymbolDoc = Server.CreateObject("Microsoft.XMLDOM")
xmlAddSymbolDoc.async = False
’
’ Replace the default symbol with a star
xmlAddSymbolDoc.load(Server.MapPath("MWXTemplates/Star.mwx"))
Set rootSymbolElem = xmlAddSymbolDoc.documentElement
Set newThemeElem = newThemeElem.replaceChild(rootSymbolElem,
styleElem)
citiesLayerDoc.save(temp.mwx)
%>

002100001022000110A60000000900171102001011227FFF11660001FFFF000111
E2FFFE006E0D5374617273202D20426C61636B202600013BFE01FC304600000009
0017008053843F51DEDC53C2000152C2000140FF002C1B4608A63F56228F637008
A6559433277A364DDB4D314DDB3F56789431854DDB04474DDB292233271B4608A6
00A00040

</SymbolDataStream>
</PointStyle>

Star PointStyle Example (continued)
64 | Chapter 5 Authoring Dynamic Maps

The following screen shows how the code uses a white star instead of the
default rectangle to display cities with a population larger than 60000.

Overriding Symbol Color

Symbols have default color information embedded in their data stream.
However, you can override the following symbol attributes:

� TextColorIndex
� LineColorIndex
� FillColorIndex
� EdgeColorIndex

Typically, you use overrides when applying themes to a map. Such overrides
provide a unique color for each theme category. For more information about
themes, see “Working with Themes,” on page 58.

Working with Reports

An Autodesk MapGuide report is a script that collects and displays informa-
tion about selected map features. Report design and coding is an advanced
topic for Autodesk MapGuide developers. This section explains how to add
existing reports to MWF files dynamically.
Customizing Maps | 65

Identifying Report Elements

The following diagram shows the hierarchy for reports.

The ServerURL element points to the script that implements the report.
Other elements, such as ServerURLData, provide information about the map
feature a user selected.

Creating XML Files for Reports

You can add or swap the complete reports, or modify individual elements or
attributes. When adding or swapping a complete report, you typically draw
from a library of previously created XML files.

The following example shows a typical XML definition of a report:

<Report>
<Name>City Report</Name>
<ServerURL>http://www.myserver.com/reports/CITY_REPORT.cfm
</ServerURL>
<ServerURLData></ServerURLData>

<SendSelectedKeys>
<ForLayer Name="Cities by Population" Parameter="OBJ_KEYS"/>

</SendSelectedKeys>
</Report>

This report works in conjunction with a layer named Cities by Population.
When a user selects one or more cities and clicks the report icon, Autodesk
MapGuide executes the CITY_REPORT.cfm script. The OBJ_KEYS parameter
tells the script which cities the user selected.

You create an XML file for a report using Autodesk MapGuide Author and a
standard text editor. Using Autodesk MapGuide Author, you create a map
with all the desired layers and reports and save the map as an MWX file. Then
with a text editor, you extract each of the report nodes and save them as sepa-
rate XML files. You can save these files in your library of map components
for later use. For more information about creating libraries, see “Creating a
Library of Map Components” on page 44.

Name
ServerURL
ServerURLData
SendSelectedKeys (or)
DigitizePoint

ReportsMapWindow Report
66 | Chapter 5 Authoring Dynamic Maps

Adding Reports

When adding reports to a map, you typically start with a base map and add
the report to its hierarchy. Reports are closely aligned with layers, but are not
part of the layer hierarchy, so make sure that you add reports only for layers
that exist.

To add a report

1 Create a DOMDocument object and load the base map.

2 Create another DOMDocument object and load the report.

3 Select the root node of the base map (MapWindow node).

4 Select the Reports node of the base map. If it doesn’t already exist, you
have to append a Reports node to the root node first.

5 Select the root node of the report (Report node).

6 Append the Report node to the Reports node.

7 Save the updated DOMDocument to a new file.

The following VBScript example shows how to open a base map named
UsaCitiesMap.mwx and add a report from CityReport.mwx:

<%@ LANGUAGE="VBSCRIPT" %>
<%
’ Create an XML DOM Object for the base map amd cities layer
Set citiesLayerDoc = Server.CreateObject("Microsoft.XMLDOM")
citiesLayerDoc.async = False
citiesLayerDoc.load(Server.MapPath("UsaCitiesMap.mwx"))
’
’ Create an XML DOM object and load the report fragment
Set xmlAddReportDoc = Server.CreateObject("Microsoft.XMLDOM")
xmlAddReportDoc.async = False
xmlAddReportDoc.load(Server.MapPath("CityReport.mwx"))
’
’ Select the reports node of the base map
Set rootMapElem = citiesLayerDoc.documentElement
Set reportsElem = rootMapElem.selectSingleNode("Reports")
’
’ Append the cities report to the map
Set rootReportElem = xmlAddReportDoc.documentElement
Set newReportElem = reportsElem.appendChild(rootReportElem)
’
’ Save the XML document
citiesLayerDoc.save(tempMWXFile)
%>

This example assumes the base map includes other reports, or at least a place-
holder Report node. By default, maps do not include this element.
Customizing Maps | 67

The MWX files this example uses are not part of the Dynamic Authoring
Toolkit templates. The UsaCitiesMap.mwx is a map with a layer that displays
United States cities. For details about the CityReport.mwx file, see “Creating
XML Files for Reports,” on page 66.

Working with Zoom Gotos

A Zoom Goto facilitates zooming to a selected location on the map. Using the
Dynamic Authoring Toolkit, you can customize the list of Zoom Goto cate-
gories so users can zoom directly to specific map locations or addresses.

Each Zoom Goto category includes the information required by Autodesk
MapGuide Server to look up locations in an OLE DB database. When one or
more matching locations are found, the associated latitude/longitude coor-
dinates are returned to Autodesk MapGuide Viewer, which zooms to the
specified location.

Identifying Zoom Goto Elements

The following diagram shows the hierarchy for Zoom Gotos.

Zoom Gotos reference either an address or location category. The zoomGo-
ToAddress node identifies the Autodesk MapGuide Server that processes
Zoom Goto addresses. The zoomGoToLocation node provides information
about the server, data source, and query for a Zoom Goto location category.

Note There can be either one ZoomGotoAddress element, or none at all.

Creating XML Files for Zoom Gotos

You can add or swap complete Zoom Goto categories, or modify their indi-
vidual elements or attributes. When adding or swapping a complete Zoom
Goto, you typically draw from a library of previously created XML files.

The following example shows a typical XML definition of a Zoom Goto
Address and ZoomGotoLocation.

Name
ServerURL
DataSource
SQLSelectStatement
MaxReturn
AccessKey

zoomGoTosMapWindow zoomGoToAddress

zoomGoToLocation

ServerURL
AccessKey
68 | Chapter 5 Authoring Dynamic Maps

<ZoomGotos>
<ZoomGotoAddress>

<ServerURL>
http://www.myserver.com/mapguide6/mapagent_isapi.isa
</ServerURL>

 <AccessKey></AccessKey>
</ZoomGotoAddress>

<ZoomGotoLocation>
<Name>Zoom to City</Name>
<ServerURL>
http://www.myserver.com/MapGuide6/mapagent_isapi.isa
</ServerURL>
<DataSource>mapguide_sample</DataSource>
<SQLSelectStatement>
select NAME, LATITUDE, LONGITUDE, LATITUDE, LONGITUDE from
Sample_World_Cities where NAME like '%s%%' order
by NAME
</SQLSelectStatement>
<MaxReturn>200</MaxReturn>
<AccessKey></AccessKey>

</ZoomGotoLocation>
</ZoomGotos>

This Zoom Goto example works in conjunction with a data source named
Sample_World_Cities. The SQLSelectStatement locates cities that match the
user’s input and returns the associated latitude/longitude coordinates to
Autodesk MapGuide Viewer, which zooms to the specified location. The
ZoomGotoLocation nodes correspond to Zoom Goto categories displayed in
Autodesk MapGuide Author.

You create an XML representation of a Zoom Goto using Autodesk MapGuide
Author and a standard text editor. Using Autodesk MapGuide Author, you
create a map with all the desired Zoom Gotos and save the map as an MWX
file. Then with a text editor, you extract each Zoom Goto node, saving them
as a separate XML files. You can save these files in your library of map compo-
nents for later use. For more information about creating libraries, see
“Creating a Library of Map Components” on page 44.

Adding Zoom Goto Categories

When adding a Zoom Goto category to a map, you typically start with a base
map and add the Zoom Goto categories to its hierarchy.

To add a Zoom Goto Category

1 Create a DOMDocument object and load the base map.

2 Create another DOMDocument object and load the Zoom Goto category.

3 Select the zoomGotos node of the base map. If it doesn’t already exist, you
have to append the zoomGotos node first.
Customizing Maps | 69

4 Select the root node of the Zoom Goto category (ZoomGotoLocation
node).

5 Append the zoomGotoLocation node to the zoomGotos node of the base
map.

6 Save the updated DOMDocument to a new file.

The following VBScript example shows how to open a base map named
UsaCitiesMap.mwx and add a Zoom Goto location from ZoomToCity.mwx:

<%@ LANGUAGE="VBSCRIPT" %>
<%
’ Create an XML DOM Object for the base map amd cities layer
Set citiesLayerDoc = Server.CreateObject("Microsoft.XMLDOM")
citiesLayerDoc.async = False
citiesLayerDoc.load(Server.MapPath("MWXTemplates/UsaCitiesMap.mwx"
))
’
’ Create an XML DOM object and load the zoom fragment
Set xmlAddZoomDoc = Server.CreateObject("Microsoft.XMLDOM")
xmlAddZoomDoc.async = False
xmlAddZoomDoc.load(Server.MapPath("MWXTemplates/ZoomToCity.mwx"))
’
’ Select the Zoom Goto node of the base map
Set rootMapElem = citiesLayerDoc.documentElement
Set zoomElem = rootMapElem.selectSingleNode("ZoomGotos")
’
’ Append the cities zoom category to the map
Set rootZoomElem = xmlAddZoomDoc.documentElement
Set newZoomElem = zoomElem.appendChild(rootZoomElem)
’
’ Save the XML document
citiesLayerDoc.save(tempMWXFile)
%>

This example assumes the base map includes other Zoom Gotos. By default,
maps do not include the zoomGotos element.

The MWX files used by this example are not part of the Dynamic Authoring
Toolkit templates. The UsaCitiesMap.mwx is a map with a layer that displays
United States cities. For details about the ZoomToCity.mwx file, which
contains only the zoomGotoLocation node, see “Creating XML Files for
Zoom Gotos,” on page 68.

Working with Popup Menus

A popup menu is displayed when you right-click in the map area. This menu
provides convenient access to commonly-used actions, such as zoom or
print. Autodesk MapGuide provides a default popup menu and the tools you
need to customize it dynamically.
70 | Chapter 5 Authoring Dynamic Maps

Identifying Popup Menu Elements

The following diagram shows the hierarchy for popup menus.

A popup menu contains menu items and separators, and can nest additional
popup menus. For example, a Print menu item might open a nested popup
menu that includes menu items such as Page Setup and Print Map.

Creating Popup Menus

You can add or swap the complete menu structure, or modify individual
elements or attributes. When adding or swapping a menu structure, you typi-
cally draw from a library of previously created XML files.

The following example shows a popup menu file with two menu items, Print
and About Autodesk MapGuide:

<?xml version="1.0" encoding="UTF-8"?>
<PopupMenu Name="Popup Menu">
 <PopupMenu Name="&Print">
 <MenuItem Name="Pa&ge Setup..." Action="10"/>
 <MenuItem Name="&Print Map..." Action="11"/>
 </PopupMenu>
 <MenuSeparator/>
 <MenuItem Name="&About Autodesk MapGuide..." Action="800"/>
 </PopupMenu>

In this example, the Print menu item is itself a popup menu with Page Setup
and Print Map menu items. This is a complete menu tree that you can
dynamically add to a map.

You create an XML representation of the popup menu using Autodesk
MapGuide Author and a standard text editor. Using Autodesk MapGuide
Author, you create a map with the desired popup menu and save the map as
an MWX file. Then with a text editor, you extract the entire PopupMenu
node and save it as an XML file. You can save these files in your library of
map components for later use. For more information about creating libraries,
see “Creating a Library of Map Components” on page 44.

MenuItem (or)
MenuSeparator (or)
PopupMenu

PopupMenuMapWindow
Customizing Maps | 71

Adding Popup Menus

When building a dynamic map, you typically start with a base map and add
the popup menu to its hierarchy.

To add a popup menu

1 Create a DOMDocument object and load the base map.

2 Create another DOMDocument object and load the popup menu.

3 Select the root node of the base map (MapWindow node).

4 Select the root node of the layer (PopupMenu node).

5 Append the PopupMenu node to the MapWindow node.

6 Save the updated DOMDocument to a new file.

The following ColdFusion example shows how to open a base map named
WGS84.MWX and add a popup menu named HelpAboutPopupMenu.mwx:

<!--- Define base map and popup menu file paths --->
<cfset BaseMapPath = #expandpath("MWXTemplates\WGS84.mwx")#>
<cfset PopupMenuPath =
#expandPath("MWXTemplates\HelpAboutPopupMenu.mwx")#>

<!--- Create a Microsoft XMLDOM object and load the base map --->
<cfobject type="COM" name="DynamicMapDoc"
class="Msxml2.DOMDocument" action="create">
<cfset DynamicMapDoc.async = false>
<cfset IsLoaded = DynamicMapDoc.load(#BaseMapPath#)>

<!--- Create a temporary XMLDOM object and load the popup menu --->
<cfobject type="COM" name="TempMwxDoc" class="Msxml2.DOMDocument"
action="create">
<cfset TempMwxDoc.async = false>
<cfset IsLoaded = TempMwxDoc.load(#PopupMenuPath#)>

<!--- Append the menu to the base map --->
<cfset XmlDocElem = TempMwxDoc.documentElement>
<cfset BaseMapRootNode = DynamicMapDoc.documentElement>
<cfset NewMapWindowNode =
BaseMapRootNode.appendChild(TempMwxDoc.documentElement)>

<!--- Save the map to a new MWX file --->
<cfset MwxFilepath = #expandPath("DynamicMap.mwx")#>
<cfset DynamicMapDoc.Save(#MwxFilepath#)>

This example is based on the Example 1 templates of the Dynamic Authoring
Toolkit.
72

I

�

�

�

�

�

6
Delivering Dynamic Maps
n this chapter

Understanding the map
delivery process

Developing an interview
form

Displaying a dynamic map

Building and returning the
map

Returning map layers
This chapter describes how to interview users, construct a

map, and deliver it to Autodesk MapGuide® Viewer. It

also explains how you can use the Dynamic Authoring

Toolkit in conjunction with the Autodesk MapGuide

Viewer API to update map layers.
73

Understanding the Map Delivery Process

An interview-based delivery system has the following key components:

� An HTML form for collecting user input
� A Web script to control delivery
� An XML parser for editing maps
� The Dynamic Authoring Toolkit for converting file types
� A library of base and feature XML documents

The following diagram shows the process of collecting user input, building a
dynamic map, and returning it to a viewer.

The process starts when a user selects map characteristics from an interview
form and requests a map. A Web script processes the request, creating a
composite map from a library of base map and map feature MWX files. Base
maps define the projection and coordinate system, and map features define
all other map components, such as layers, themes, and reports. The script
may alter map features or build new ones as it constructs a map. The
composite map is saved as a temporary XML document, which the script
converts to an MWF stream using the Dynamic Authoring Toolkit. Finally,
the script returns the stream to Autodesk MapGuide Viewer for display.
74 | Chapter 6 Delivering Dynamic Maps

There are variations of this process, such as delivering layers rather than
maps. Also, map feature files may not be necessary because the script can
build an entire structure from beginning to end. This chapter covers a few
common use cases and presents simple code examples.

Developing an Interview Form

An interview form provides a menu of map characteristics from which users
make selections. The type and number of characteristics presented vary by
application, and can include any property you can set using Autodesk
MapGuide® Author. The following list identifies a few major map features
you may choose to present:

� Type of base map projection
� Layers to include in the map
� Themes to add to the map
� Reports, Zoom Gotos, or popup menus to add

The following interview form is from Example 1 in the Dynamic Authoring
Toolkit.

This type of form refers to map features directly. Users can select a map
projection, map layer content, and a popup menu.

Some interview forms might not refer to map elements at all. Instead they
might present application-level selections, such as Gardening or Architec-
ture, that bring up a predefined set of layers, reports, and menus.
Developing an Interview Form | 75

Displaying a Dynamic Map

You display Autodesk MapGuide maps in a standard Web browser with
Autodesk MapGuide Viewer. When a Web server receives a request for an
MWF, it returns a map that identifies the MIME type (application/x-mwf). If
Autodesk MapGuide Viewer is present, the browser recognizes the MIME type
and opens the document.

Setting the MIME Type

With Microsoft® Internet Information Server, the MIME type for the
Autodesk MapGuide® MWF file format is registered in your Web server when
you install Autodesk MapGuide® Server. With other Web servers, such as
Netscape® Enterprise Server or Apache, you need to register the following
MIME type manually.

application/x-mwf,mwf,,5

This MIME mapping allows the server to send a header to the client’s browser
that identifies the page as an Autodesk MapGuide map. Many products use
MIME mapping, including Microsoft® Word and Adobe® Acrobat®.

Embedding a Map

A client browser automatically opens an MWF if Autodesk MapGuide®
Viewer is installed. However, if the user doesn’t have Autodesk MapGuide
Viewer installed, your application can be designed to download it. To do this
you embed an HTML sequence in your Web page that downloads and installs
Autodesk MapGuide Viewer.

The following HTML page shows how to embed an Autodesk MapGuide map
in a Web page:

Embedded Map Example

<html>
<head>
<title>Autodesk MapGuide Map</title>
</head>
<body>
<p>
<object ID="map" WIDTH="100%" HEIGHT="100%"

CLASSID="CLSID:62789780-B744-11D0-986B-00609731A21D"
CODEBASE="ftp://adeskftp.autodesk.com/webpub/mapguide/ver6/

viewer/en/mgaxctrl.cab">
<param name="URL" value="scriptname.asp">
76 | Chapter 6 Delivering Dynamic Maps

This page uses an HTML object to identify the map object, and includes
download information for Autodesk MapGuide Viewer. In this example, the
map is delivered by a script (scriptname.asp), which returns the map as a
binary data stream. For a static map page, you use an MWF map name instead
of a script name.

Building and Returning the Map

The heart of the dynamic map system is the script that creates the map,
converts it to MWF, and returns it to the browser. This section focuses on
returning the map to the browser.

Working with XML Documents

You use an XML parser to create and change the MWX version of Autodesk
MapGuide map files. For more information about customizing maps, see
“Authoring Dynamic Maps” on page 43.

Converting to MWF

You use the Dynamic Authoring Toolkit to convert XML representations of
map files to MWF or MLF formats. For more information about converting
file formats, see “Working with XML” on page 29.

Returning a Binary Stream

The Dynamic Authoring Toolkit includes methods for writing a map object
as either a file or data stream. For dynamic maps, you usually return a map
to the client as a data stream.

<embed src = "scriptname.asp" Name = "map" width = "100%"
height = "100%"

pluginspage = "ftp://adeskftp.autodesk.com/webpub/mapguide/ver6/
viewer/en/mp60.exe">

</object>
</p>
</body>
</html>

Embedded Map Example (continued)
Building and Returning the Map | 77

The following ASP example shows how to create and deliver a dynamic map
as a binary stream:

Returning a Binary Stream

<%@ LANGUAGE="VBSCRIPT" %>
<%
’
’ Create an XML DOM object for the base map and cities layer
Set citiesLayerDoc = Server.CreateObject("Microsoft.XMLDOM")
citiesLayerDoc.async = False
citiesLayerDoc.load(Server.MapPath("MWXTemplates/UsaCitiesMap.mwx"
))
’
’ Script for modifying the map XML DOM object goes here
’ ...
’
’ Create a FileSystemObject to handle checking and creating folders,
’ generating temporary file names, and deleting files
Set fso = CreateObject("Scripting.FileSystemObject")
’
’ Get the path to this file
currentFile = Request.ServerVariables("PATH_TRANSLATED")
’ Remove the file name leaving just the directory path
currentDir = Left(currentFile, InstrRev(currentFile, "\"))
’
’ Temporary files should be stored in a temporary subdirectory of the
’ current directory
tempDir = currentDir + "temp"
’
’ Create the temp folder if it does not already exist
If Not fso.FolderExists(tempDir) Then

fso.CreateFolder(tempDir)
End If
’
’ Create a string containing the path to a temporary MWX file in the
’ temporary directory
tempMWXFile = tempDir + "\" + fso.GetTempName
’
’ Save modified XML DOM to the temporary MWX file
citiesLayerDoc.save(tempMWXFile)
’
’ Create a MapWindowFile object to convert the MWX file to MWF
Set mwfDoc = Server.CreateObject("Autodesk.MapWindowFile")
mwfDoc.ValidateMwx = TRUE
mwfDoc.CompressMwf = FALSE
’
’ Load the MWX file into the MapWindowFile object
mwfDoc.ReadFromMwx(tempMWXFile)
’

78 | Chapter 6 Delivering Dynamic Maps

This example demonstrates the following tasks:

� Opening an MWX file, which typically contains a base map and layer
information, using the Microsoft MSXML parser.

� Modifying the MWX file and saving it as a temporary MWX file. You use
a standard file system object for creating a temporary folder and file name.

� Converting the temporary MWX file to an MWF data stream. You use the
ReadFromMwx and WritetoMwfStream methods of the Dynamic Author-
ing Toolkit for this task.

� Returning the stream to the browser. The BinaryWrite method of the
Response object returns the MWF stream.

Remember to validate the MWX file before returning it to the client. Failure
to do so can result in unpredictable behavior. This example sets the
ValidateMwx property of the mwfDoc object to TRUE to force the
ReadFromMwx method to verify that the XML format conforms to the XML
schema. If you have problems reading the XML document, the likely cause is
missing or incorrect schema information in the XML file or a missing XML
schema file. For more information about validation, see “Validating XML
Documents” on page 36.

Using an Intermediate File

You can save a map object to an intermediate MWF or MLF file, which you
subsequently open in a Web page. This approach requires more scripting
than a data stream and may delay delivery of maps.

To use an intermediate file

1 Invoke a script to build the map and save an MWF or MLF file.

2 Open the MWF or MLF file in a client page.

’ Delete the temporary files
fso.DeleteFile(tempMWXFile)
fso.DeleteFolder(tempDir)
’
’ Return the binary MWF information
Response.Expires = -1
Response.Buffer = TRUE
Response.ContentType = "application/x-mwf"
Response.BinaryWrite(mwfDoc.WriteToMwfStream())
Response.End
%>

Returning a Binary Stream (continued)
Building and Returning the Map | 79

Returning Map Layers

You can use the Dynamic Authoring Toolkit to deliver dynamically created
layers to an existing map display. Because layers contain most of the map
information, this is a powerful tool in dynamic map creation. For example,
you may want to display a background map next to the user interview form.
As the user submits requests, such as theme specifications, the script creates
and returns map layers that add content to the display.

To add layers to an existing display you write two scripts, one for the Web
client and another for the Web server. The client script invokes methods of
the Autodesk MapGuide Viewer API that add or remove layers. The server
script creates the dynamic layer and delivers it to the client.

Writing Server Scripts

The server script for a layer is similar to that for a map. The primary differ-
ence is the Response object, which returns an MLF stream instead of an MWF
stream, as shown in the following VBScript fragment:

’ Return the binary MLF information
layerName = "Cities by Population"
groupName = ""
Response.Expires = -1
Response.Buffer = TRUE
Response.ContentType = "application/x-mlf"
Response.BinaryWrite(mwfDoc.WriteToMlfStream(groupName,layerName))
Response.End

This example returns the Cities by Population layer. Because this layer is not
within a layer group, the group name is a null string. To see a more complete
ASP example, see “Returning a Binary Stream” on page 77.
80 | Chapter 6 Delivering Dynamic Maps

Writing Autodesk MapGuide Viewer Scripts

The client script adds a layer to the map by invoking the addMapLayer
method of Autodesk MapGuide Viewer, passing the name of the server script
that builds and returns the layer data stream.

The following JavaScript example shows a typical client script:

This script removes any existing Cities by Population layer from the map
frame, and then adds the updated layer. In this example the layer script is
cities.asp, which requires an argument named numThemes.

The conditional statements include code to accommodate both the
Netscape® Navigator and Microsoft® Internet Explorer browsers.

JavaScript Client Code

<script language="JavaScript">

function addCities()
{

var map;
if (navigator.appName == "Netscape")

map = parent.MapFrame.document.map;
else

map = parent.MapFrame.window.map;

map.setAutoRefresh(false);
map.removeMapLayer("Cities by Population");

var url = "cities.asp?numThemes=4";

if (navigator.appName == "Netscape")
map.addMapLayer(url, null);

else
map.addMapLayer(url);

map.refresh();
map.setAutoRefresh(true);
document.citiesForm.submit();

}
</script>
Returning Map Layers | 81

82

I

�

�

7
Reference
n this chapter

Dynamic Authoring Toolkit
API

XML schema reference
This chapter describes methods and properties of the

Dynamic Authoring Toolkit. It also provides additional

information about the XML schema elements.
83

Dynamic Authoring Toolkit API

The Dynamic Authoring Toolkit is an in-process COM DLL (MGDAT.dll) that
is compatible with any development environment that supports COM
automation.

MapWindowFile Object

The Autodesk MapGuide Dynamic Authoring Toolkit defines a single object,
the MapWindowFile. This object includes methods and properties for
converting file formats, validating MWX files, and compressing MWFs and
MLFs. You can write MWFs or MLFs to a file or return them as data streams
to Autodesk MapGuide Viewer.

Properties

The Dynamic Authoring Toolkit includes the following properties:

Property Summary

Properties Description

MapWindowFile.CharacterEncoding Get or set the character encoding standard
for XML files

MapWindowFile.CompressMlf Enable or disable compression of MLF files

MapWindowFile.CompressMwf Enable or disable compression of MWF files

MapWindowFile.CreatedBy Get the name and version of the creating
application

MapWindowFile.ValidateMwx Enable or disable validation of MWX files

MapWindowFile.Version Get the version of the MWF or MWX file
84 | Chapter 7 Reference

MapWindowFile.CharacterEncoding Property

Get or set the character encoding standard for XML files.

Read: intValue = oMwf.CharacterEncoding
Write: oMwf.CharacterEncoding = intValue

Type

Integer (read/write)

Values: mwfUtf8 or mwfUtf16

Description

XML documents use either UTF-16 or UTF-8 character formats. UTF-16 may
be more portable because it encodes characters in a two-byte format that can
easily accommodate any language. UTF-8 may be more efficient because it
encodes each character in a single byte, which is best suited to European
languages. Set the desired encoding type before writing an XML document.
The default value is mwfUtf-8.

Note Make sure the client browsers and XML development tools in your system
support the character formats you plan to use.

See Also

MapWindowFile.WriteToMwx Method

MwfCharacterEncoding Enumeration

MapWindowFile.CompressMlf Property

Enable or disable compression of MLF files.

Read: boolValue = oMwf.CompressMlf
Write: oMwf.CompressMlf = boolValue

Type

Boolean (read/write)
Dynamic Authoring Toolkit API | 85

Description

Compression reduces the size of MLF files, which speeds their delivery to
clients. This is important when transferring map files over a public network
where bandwidth is limited. When working locally over a fast network, you
can disable compression.

Set the desired compression type before writing an MLF file or data stream.
The default value is True, which enables compression.

See Also

MapWindowFile.CompressMwf Property

MapWindowFile.WriteToMlf Method

MapWindowFile.WriteToMlfStream Method

MapWindowFile.CompressMwf Property

Enable or disable compression of MWF files.

Read: boolValue = oMwf.CompressMwf
Write: oMwf.CompressMwf = boolValue

Type

Boolean (read/write)

Description

Compression reduces the size of MWF files, which speeds their delivery to
clients. This is important when transferring map files over a public network
where bandwidth is limited. When working locally over a fast network, you
can disable compression.

Set the desired compression type before writing an MWF file or data stream.
The default value is True, which enables compression.

See Also

MapWindowFile.CompressMlf Property

MapWindowFile.WriteToMwf Method

MapWindowFile.WriteToMwfStream Method
86 | Chapter 7 Reference

MapWindowFile.CreatedBy Property

Get the name and version of the creating application.

Read: strValue = oMwf.CreatedBy

Type

String (read only)

Description

Autodesk MapGuide Author and the Dynamic Authoring Toolkit set this
property to the following strings when writing MWF or MWX files:

� N.N.N.N—Autodesk MapGuide Dynamic Authoring Toolkit
� N.N.N.N—Autodesk MapGuide Author

where N.N.N.N is the product version number

Autodesk MapGuide Author displays the product version number in the
About Autodesk MapGuide Author dialog box. The Dynamic Authoring
Toolkit product version number is a property of the MGDAT.DLL file.

See Also

MapWindowFile.WriteToMwf Method

MapWindowFile.WriteToMwx Method

MapWindowFile.ValidateMwx Property

Enable or disable validation of MWX files.

Read: boolValue = oMwf.ValidateMwx
Write: oMwf.ValidateMwx = boolValue

Type

Boolean (read/write)

Description

Validation is the process of verifying that an XML document conforms to the
structure of the XML schema. When set to True, the ReadFromMwx method
validates documents it reads. However, you may choose to manually validate
documents using standard Microsoft XML tools.
Dynamic Authoring Toolkit API | 87

The ReadFromMwx method validates the XML document using the schema
specified by the name space (xmlns) attribute of the MapWindow element.

Warning Disable validation with caution; a corrupt XML document can cause
serious application or Dynamic Authoring Toolkit errors.

See Also

MapWindowFile.ReadFromMwx Method

MapWindowFile.Version Property

Get the version of the MWF or MWX file.

Read: strValue = oMwf.Version

Type

String (read only)

Description

This property identifies the version of the Dynamic Authoring Toolkit or
Autodesk MapGuide Author that wrote the MWF or MWX file. The
WriteToMwf and WriteToMwx methods automatically set this value.

This information is important when the version of the Dynamic Authoring
Toolkit is different from the version of the MWF or MWX file that you are
reading. For example, you may want to warn users before converting map
files to a later version.

See Also

MapWindowFile.CreatedBy Property

MapWindowFile.WriteToMwf Method

MapWindowFile.WriteToMwx Method
88 | Chapter 7 Reference

Methods

The Dynamic Authoring Toolkit includes the following methods:

MapWindowFile.ReadFromMwf Method

Read an MWF file.

oMwf.ReadFromMwf pathname, password

Parameters

pathname—The path and name of the MWF file, expressed as a text string.

password—The password of the MWF file, expressed as a text string.

Description

This method reads an MWF file into the MapWindowFile object, where you
can view or change the file conversion properties and write it to an MWX file.
For example, you can read an MWF file, set its CharacterEncoding prop-
erty, and write it to an MWX file.

The password you specify when reading a file is the same one that users enter
when opening a map in Autodesk MapGuide Author. If the file is not pass-
word protected, specify a null string.

Method Summary

Method Description

MapWindowFile.ReadFromMwf Read an MWF file

MapWindowFile.ReadFromMwx Read an MWX file

MapWindowFile.WriteToMlf Write a map layer to an MLF file

MapWindowFile.WriteToMlfStream Write a map layer to a data stream

MapWindowFile.WriteToMwf Write a map to an MWF file

MapWindowFile.WriteToMwfStream Write a map to a data stream

MapWindowFile.WriteToMwx Write a map to an MWX file
Dynamic Authoring Toolkit API | 89

Returns

No return value.

See Also

MapWindowFile.CharacterEncoding Property

MapWindowFile.WriteToMwx Method

MapWindowFile.ReadFromMwx Method

Read an MWX file.

oMwf.ReadFromMwx pathname

Parameters

pathname—The path and name of the MWX file, expressed as a text string.

Description

This method reads an MWX file into the MapWindowFile object, where you
can view or change the file conversion properties and write it to an MWF/
MLF file or data stream. For example, you can read an MWX file, enable the
CompressMwf property, and write it to an MWF file.

If the ValidateMwx property is True, this method validates the document
using the schema specified by the name space (xmlns) attribute of its
MapWindow element. Autodesk MapGuide Author and the Dynamic
Authoring Toolkit set the xmlns attribute to MapWindowXMLSchema.xdr
when they write an MWX file. ReadFromMwx searches the bin folder of the
Dynamic Authoring Toolkit for the schema.

Returns

No return value.

See Also

MapWindowFile.CompressMwf Property

MapWindowFile.ValidateMwx Property

MapWindowFile.WriteToMwf Method
90 | Chapter 7 Reference

MapWindowFile.WriteToMlf Method

Write a map layer to an MLF file.

oMwf.WriteToMlf pathname, groupName, layerName

Parameters

pathname—The path and name of the MLF file, expressed as a text string.

groupName—The name of the group to which the map layer belongs,
expressed as a text string. If the layer does not belong to a group, set this
parameter to a null string.

layerName—The name of the map layer, expressed as a text string.

Description

This method writes the layer you specify to an MLF file. You can post this file
on an HTTP server for direct access by a Web browser. Alternatively, you can
use WriteToMlfStream to write the layer as a data stream directly to a user's
browser.

You can compress MLF files by setting the CompressMlf property to True
before calling this method. Compression reduces the size of the file, which
speeds its delivery to clients.

Note This method assumes unique group and layer names and saves only the
first occurrence found.

Returns

No return value.

See Also

MapWindowFile.CompressMlf Property

MapWindowFile.WriteToMlfStream Method
Dynamic Authoring Toolkit API | 91

MapWindowFile.WriteToMlfStream Method

Write a map layer to a data stream.

Set mlfStream = oMwf.WriteToMlfStream(groupName, layerName)

Parameters

groupName—The name of the group to which the map layer belongs,
expressed as a text string. If the layer does not belong to a group, set this
parameter to a null string.

layerName—The name of the map layer, expressed as a text string.

Description

Use this method instead of WriteToMlf to return a layer as a data stream
directly to a user's browser. The maximum steam size is 4GB (4,294,967,295).

You can compress the stream data by setting the CompressMlf property to
True before calling this method. Compression reduces the size of the file,
which also speeds its delivery to clients.

Note This method assumes unique group and layer names and only writes the
first occurrence found.

Returns

An array of bytes containing the MLF binary data.

See Also

MapWindowFile.CompressMlf Property

MapWindowFile.WriteToMlf Method

MapWindowFile.WriteToMwf Method

Write a map to an MWF file.

oMwf.WriteToMwf pathname

Parameters

pathname—The path and name of the MWF file, expressed as a text string.
92 | Chapter 7 Reference

Description

This method updates the CreatedBy and Version properties and writes the
map to an MWF file. You can post this file on an HTTP server for access by a
Web browser. Alternatively, you can use the WriteToMwfStream method to
write the layer as a data stream to a user’s browser.

You can compress MWF files by setting the CompressMwf property to True
before calling this method. Compression reduces the size of the file, which
speeds its delivery to clients.

Returns

No return value.

See Also

MapWindowFile.CompressMwf Property

MapWindowFile.CreatedBy Property

MapWindowFile.Version Property

MapWindowFile.WriteToMwfStream Method

MapWindowFile.WriteToMwfStream Method

Write a map to a data stream.

Set mwfStream = oMwf.WriteToMwfStream()

Parameters

None

Description

Use this method instead of WriteToMwf to return a map as a data stream
directly to a user’s browser. The maximum stream size is 4GB
(4,294,967,295).

You can compress the stream data by setting the CompressMwf property to
True before calling this method. Compression reduces the size of the file,
which also speeds its delivery to clients.
Dynamic Authoring Toolkit API | 93

Returns

An array of bytes containing the MWF binary data.

See Also

MapWindowFile.CompressMwf Property

MapWindowFile.WriteToMwf Method

MapWindowFile.WriteToMwx Method

Write a map to an MWX file.

oMwf.WriteToMwx pathname

Parameters

pathname—The path and name of the MWX file, expressed as a text string.

Description

An MWX file represents a map in the XML format, which you can edit and
validate using standard XML editing tools. This method updates the
CreatedBy and Version properties and writes the map to an MWX file.
Before invoking this method, set the CharacterEncoding property, as
necessary.

Returns

No return value.

See Also

MapWindowFile.CharacterEncoding Property

MapWindowFile.CreatedBy Property

MapWindowFile.Version Property

MapWindowFile.ReadFromMwx Method
94 | Chapter 7 Reference

Enumerations

The MwfCharacterEncoding enumeration has the following members and
values:

Error Codes

The following table describes the MwfErrorCodes returned:

Enumeration Values

Members Value Description

mwfUtf8 0 Use UTF-8 character encoding

mwfUtf16 1 Use UTF-16 character encoding

Error Codes Summary

MwfErrorCode HRESULT Description

mwfOk 0x00000000 No error; the method executed successfully.

mwfUnknown 0x80045000 An unclassified exception has occurred in this program.

Operation: read and write

mwfNoFileName 0x80045001 The MWF or MWX has not been given a file name.

Operation: read and write

mwfCantOpen 0x80045002 Unable to open the MWF or MWX file. Check that the
file exists, and is not already open in another
application.

Operation: read

mwfCantOverwrite 0x80045003 Unable to overwrite the MWF or MWX file. Check that
the file is write-enabled and not locked by another
application.

Operation: write

mwfCantCreateTempFile 0x80045004 Unable to create a temporary file.

Operation: read and write
Dynamic Authoring Toolkit API | 95

mwfReadError 0x80045005 An error occurred reading the MWF or MWX file.

Operation: read

mwfWriteError 0x80045006 An error occurred writing the MWF or MWX file.

Operation: write

mwfCompressionLibError 0x80045007 Unable to initialize compression library for MWF or MLF
creation.

Operation: read and write

mwfCantDecompress 0x80045008 An error occurred decompressing an MWF file.

Operation: read

mwfCantCompress 0x80045009 An error occurred compressing an MWF or MLF file.
This error occurs when a temporary file cannot be writ-
ten. Check that you have write access to the destina-
tion directory.

Operation: write

mwfUnknownCompression
Scheme

0x8004500A An intermittent network error occurred for an MWF file.
Try reloading the map window file.

Operation: read

mwfVersionMismatch 0x8004500B The MWF or MWX file you are trying to open requires
the latest version of the Autodesk Dynamic Authoring
Toolkit. Please install a more recent version. For exam-
ple, you tried to open a greater than 6 file in version 6
software.

Operation: read

mwfInvalidPassword 0x8004500C The password you entered is incorrect.

Operation: read

mwfInvalidMapCoordSys 0x8004500D You have attempted to load an MWF or MWX file that
uses a map coordinate projection not supported by this
version of the Autodesk Dynamic Authoring Toolkit.

Operation: read

Error Codes Summary (continued)

MwfErrorCode HRESULT Description
96 | Chapter 7 Reference

mwfCanceled 0x0004500E N/A

Operation: read and write

mwfOutOfMemory 0x8004500F Out of memory.

Operation: read and write

mwfInvalidArgument 0x80045010 One or more arguments are invalid.

Operation: read and write

mwfUnexpected 0x80045011 An unexpected error. For example, a script tried to
retrieve the MWF version when the MWF was not read
successfully.

Operation: read and write

mwfParserUnavailable 0x00045100 The system is unable to locate the Microsoft MS XML
parser. Please reinstall the Autodesk Dynamic Author-
ing Toolkit.

Operation: read

mwfParserError 0x00045101 An unspecified parser error occurred in the Microsoft
MS XML parser.

Operation: read

mwfXmlError
(only in MWX files)

0x00045102 A specific message from the Microsoft MSXML parser
or the MWX reader at runtime. This message varies
depending on the element that causes the error.

Operation: read

mwfLicenseExpired 0x80045500 Your license for the Dynamic Authoring Toolkit has
expired. Please contact your Autodesk dealer to pur-
chase a new license.

Error Codes Summary (continued)

MwfErrorCode HRESULT Description
Dynamic Authoring Toolkit API | 97

XML Schema Reference

Autodesk MapGuide Viewer API Help provides additional information about
schema elements and attributes. The following table maps schema elements
to Autodesk MapGuide Viewer API attributes:

Map of Schema and Autodesk MapGuide Viewer Names

Schema Element Description API Object,
Method, or
Property

AccessGeometry The type of access that a map layer has to fea-
ture geometry

MGMapLayer.lock

AccessGeometryPasskey An encrypted string that controls access to
MapGuide Viewer API functions that are related
to map feature geometry

None

AccessKey An encrypted string used by Autodesk
MapGuide Server to determine whether a map
layer or a Zoom Goto category has permission
to access a resource

MGMapLayer.
AccessKey

AccessLayerSetupAPI The type of access that the Autodesk
MapGuide Viewer API has for Layer Setup

MGMapLayer.lock

AccessLayerSetupAPIPass-
key

An encrypted string that controls access to the
MapGuide Viewer API functions related to layer
setup

None

AllowLabelsToOverpost-
Features

A control that draws or hides a label at a spe-
cific zoom level if it obscures other labels or
features on the map

None

ApplySQLWhereClauseTo A control that specifies whether to apply a SQL
Where clause to a feature or secondary table

MGMapLayerSetup.
WhereFromSdpFea-
tureTable

BackgroundColorIndex The index for the background color that
appears behind all of the map layers

None

BackgroundPixelColorIn-
dex

The index for the background pixel color for
bitonal images

None
98 | Chapter 7 Reference

BitonalImages The specifications for displaying overlapping
black-and-white raster images referenced by
the layer

None

BufferLayer An Autodesk MapGuide layer that contains
buffers

MGMapLayer.
LayerType

BufferLayerProperties The buffer layer properties MGMapLayer

BufferLayerStyle The display range at which the buffer layer is
visible

MGMapLayerStyle

BWScale The BW scale datum shift parameter None

CombinedScaleFactor A scale factor that facilitates conversion of
meters to coordinate system units

None

CoordinateSystem The coordinate system for a map that describes
its origin, projection system, and measurement
units

None

CSMap The coordinate system used by the map; these
attributes for advanced users only

None

DataFile The name of a raster image file or catalog to
use as the data source for the raster layer

MGMapLayerSetup.
DataFile

DataSource The name of the SDF feature, OLE DB feature,
DWG feature, theme property, zoomGoto, or
secondary data source

MGDatabaseSetup.
DataSource (OLE DB)

MGDwgDataSources.
DataSource (DWG)

MGMapLayerSetup.
SdpDataSource (SDF)

Datum The information used in the coordinate system
about the Earth, such as its size and shape

None

Description A description of the coordinate system that
typically indicates its category, code, and mea-
surement units

None

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
XML Schema Reference | 99

DigitizePoint A control that appends the location of a user-
selected point to report queries

None

DrawPriority The order in which the layer is drawn on the
map

MGMapLayer.Priority

DWG The name of the DWG that contains the data
for the feature

MGDwgDataSources.
Dwg

DWGFeatureDataSource The data source and selection criteria for gen-
erating reports on DWG features, and display-
ing custom MapTips and creating hyperlinks
on a DWG layer

MGDwgDataSources

DWGLayer An Autodesk MapGuide layer that contains
data from an Autodesk DWG

MGMapLayer.
LayerType

DWGLayerDataSources The data sources for the DWG layer features
and the URL of the MapAgent that serves the
data sources

MGMapLayerSetup

DWGLayerStyle The display range, text rendering, and level of
detail specifications of the DWG layer

MGMapLayerStyle

DWGStyle The specification of how much detail to serve
at the current map scale and how to render the
text of the DWG layer

None

DX The X coordinate datum shift parameter None

DY The Y coordinate datum shift parameter None

DZ The Z coordinate datum shift parameter None

EdgeColorIndex The index for the edge color of a polygon MGEdgeAttr.Color

EdgeStyle The edge style of a polygon MGEdgeAttr.Style

EdgeThickness The polygon edge thickness measured in pixels MGEdgeAttr.Thickness

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
100 | Chapter 7 Reference

Ellipsoid The ellipsoid that defines a coordinate system None

EquatorialRadius The equatorial radius of the ellipsoid, in meters None

ExpandInLegend A control that lists each theme category sepa-
rately in the Viewer legend

None

FalseEasting The false east origin used to change the coordi-
nates in the map to positive values

None

FalseNorthing The false north origin used to change the coor-
dinates in the map to positive values

None

FeatureTable The name of the table containing features to
be displayed on the layer

MGDatabaseSetup.
Table (OLE)

MGMapLayerSetup.
SdpFeatureTable (SDP)

FillBackgroundColorIn-
dex

The index for the background fill color of a
polygon

MGFillAttr.BackColor

FillColorIndex The index for the fill color of a polygon MGFillAttr.Color

FillStyle The fill style of a polygon MGFillAttr.Style

FontName The type of font, such as Arial, on a text, point,
polyline, or polygon layer

MGTextAttr.FontName

FontWeight The weight of the font, such as bold, on a text,
point, polyline, or polygon layer

None

ForegroundPixelColorIn-
dex

The index for the foreground pixel color of
bitonal images

None

ForegroundPixelValue The bits that control the foreground pixels None

ForLayer The layer or layers to include when SendSelect-
edKeys is enabled

None

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
XML Schema Reference | 101

GeneralLayerProperties The name of the map layer and layer specifica-
tions, such as visibility, legend display settings,
and draw priority

MGMapLayer

GeneralProperties The general properties of a map, such as its
name and size

MGMap

GeometryColumn The name of the column that contains the
geometry for the features in the layer

MGMapLayerSetup.
SdpGeometryColumn

GISDesignServerLayer An Autodesk MapGuide layer on which each
feature can be drawn with a different style,
based on theme information within Autodesk
GIS Design Server

MGMapLayer.
LayerType

GISDesignServerLayer-
DataSources

Specifications of the Autodesk GIS Design
Server theme and the URL of the MapAgent
that serves the data sources

MGMapLayerSetup

GISDesignServerLayer-
Style

The display range at which the Autodesk GIS
Design Server layer is visible

MGMapLayerStyle

GISDesignServerTheme A theme layer that can have many read-only
styles, which are derived from the theme intrin-
sic to Autodesk GIS Design Server

MGMapLayerSetup.
DataFile

GroupCode The unique code that identifies this coordinate
system

None

ImageExtent The outermost boundaries of the image None

ImageFormat The format of the file containing the raster
image

None

ImageResolution The sharpness and clarity of the image None

ImageSize The height and width of the image, in pixels None

Italic The angle of the text, italic or not italic, on a
text, point, polyline, or polygon layer

None

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
102 | Chapter 7 Reference

KeyColumn The name of the table column for a theme
property, DWG feature, OLE DB feature, SDP
feature, or secondary data source that contains
the primary key for each map feature

MGDatabaseSetup.
KeyColumn (OLE)

MGDwgDataSources.
KeyColumn (DWG)

MGMapLayerSetup.
SdpKeyColumn (SDP)

KeyColumnType The data type of the key column for a DWG
feature, OLE DB feature, SDP feature table

MGDatabaseSetup.
KeyColumnType (OLE)

MGDwgDataSources.
KeyColumnType (DWG)

MGMapLayerSetup.
SdpKeyColumnType
(SDP)

KeyTable The table that contains information about a
DWG layer

MGDwgDataSources.
KeyTable

LatitudeColumn The column that contains the latitude coordi-
nate (in decimal degrees) for each feature

MGDatabaseSetup.
LatColumn

LatitudeOfOrigin The latitude of the origin of the projection in
degrees

None

LayerFilter A query filter for DWG features that is based on
the layer they inhabit

MGDwgDataSources.
LayerFilter

LegendLabel The name for the layer, layer group, or theme
category displayed in the Autodesk MapGuide
Viewer legend or the Map Explorer in Autodesk
MapGuide Author

MGMapLayer.
LegendLabel

MGMapLayerGroup.
LegendLabel

LineColorIndex The index for colors for lines on a polyline layer MGLineAttr.Color

LineStyle The line style for polylines on a polyline layer MGLineAttr.Style

LineThickness The line thickness measured in pixels MGLineAttr.Thickness

LongitudeColumn The column that contains the longitude coordi-
nate (in decimal degrees) for each feature

MGDatabaseSetup.
LonColumn

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
XML Schema Reference | 103

LongitudeOfOrigin The longitude of the origin of the projection in
degrees

None

MaintainAspectRatio Keeps the current width-to-height proportions
when you change either the width or height of
the symbol

None

MapCenter The center point of the map None

MapLayerGroup A group of layers for organization and display
in the Autodesk MapGuide Viewer legend or
the Map Explorer in Autodesk MapGuide
Author

MGMapLayer.
MapLayerGroup

MapLayerGroupProper-
ties

The name of a layer group and how the layer
group appears in the Viewer legend

None

MapLayerGroups A collection of map layer groups MGMap.
MapLayerGroups

MapLayers Groupings of map features that are stored and
displayed together

MGMap.MapLayers

MGMapLayerGroup.
MapLayers

MapScale A proportion or ratio between a map measure-
ment and the corresponding measurement on
the ground

None

MapSize The width and height of the map None

MapWindow MapWindow (document element). MGMap

MaxDisplayRange The maximum scale at which Autodesk
MapGuide displays a layer

MGMapLayerStyle.
MaxDisplayRange

MaxReturn The maximum number of matching locations
to be listed for the zoom category

None

MaxThemeValue The maximum value for a theme based on a
range of values

None

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
104 | Chapter 7 Reference

MenuItem A description of the menu item on a popup
menu

None

MenuSeparator A horizontal line in the popup menu that visu-
ally separates menu items

None

MinDisplayRange The minimum scale at which Autodesk
MapGuide displays a layer

MGMapLayerStyle.
MinDisplayRange

MinThemeValue The minimum value for a theme based on a
range of values

None

Name The name of an Autodesk MapGuide map
component such as a map window, map layer,
layer group, report, or Zoom Goto

MGMap.MapName

MGMapLayer.Name

MGMapLayerGroup.
Name

NameColumn The column in the Name Table that contains
the information that is displayed when a user’s
mouse pauses over a map layer feature

MGDatabaseSetup.
NameColumn (OLE &
SDP)

MGDwgDataSources.
NameColumn (DWG)

NameSource A control that specifies the source of feature
names

MGMapLayerSetup.
NameFromSdpFea-
tureTable

NameTable The table that contains the type of information
displayed in a DWG layer MapTip

MGDwgDataSources.
NameTable

OLEDBFeatureData-
Source

The specifications for an OLE DB data source
that contains the features on this layer

MGDatabaseSetup

P1 Projection parameter P1 None

P2 Projection parameter P2 None

P3 Projection parameter P3 None

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
XML Schema Reference | 105

P4 Projection parameter P4 None

P5 Projection parameter P5 None

P6 Projection parameter P6 None

P7 Projection parameter P7 None

P8 Projection parameter P8 None

P9 Projection parameter P9 None

P10 Projection parameter P10 None

P11 Projection parameter P11 None

P12 Projection parameter P12 None

P13 Projection parameter P13 None

P14 Projection parameter P14 None

P15 Projection parameter P15 None

P16 Projection parameter P16 None

P17 Projection parameter P17 None

P18 Projection parameter P18 None

P19 Projection parameter P19 None

P20 Projection parameter P20 None

P21 Projection parameter P21 None

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
106 | Chapter 7 Reference

P22 Projection parameter P22 None

P23 Projection parameter P23 None

P24 Projection parameter P24 None

Password The password for opening the map None

PointLabels The specifications for displaying labels for
points on the point layer

None

PointLayer A vector layer that contains points MGMapLayer.
LayerType

PointLayerDataSources The data sources for the point layer features
and the URL of the MapAgent that serves the
data sources

MGMapLayerSetup

MGDatabaseSetup

PointLayerStyle A specification for displaying features on a
point layer

MGMapLayerStyle

PointLayerStyles Specifications for displaying features on a point
layer

MGMapLayer.
MapLayerStyles

PointStyle The specifications for displaying features on a
point layer

MGSymbolAttr

PointThemeCategories The list of theme categories for a point layer None

PointThemeCategory A theme category for a point layer None

PointThemeProperties The point layer theme categories and their data
sources, selection criteria, and legend display
settings

None

PolarRadius The polar radius of the ellipsoid, in meters None

PolygonLabels The specifications for displaying labels on poly-
gons on the polygon layer

None

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
XML Schema Reference | 107

PolygonLayer A vector layer that contains polygons MGMapLayer.
LayerType

PolygonLayerData-
Sources

The data sources for the polygon layer features
and the URL of the MapAgent that serves the
data sources

MGMapLayerSetup

PolygonLayerStyle A specification for displaying features on a
polygon layer

MGMapLayerStyle

PolygonLayerStyles Specifications for displaying features on a poly-
gon layer

MGMapLayer.
MapLayerStyles

PolygonStyle Characteristics of features on a polygon layer MGFillAttr

PolygonThemeCategories The list of theme categories for the polygon
layer

None

PolygonThemeCategory A theme category for the polygon layer None

PolygonThemeProperties The polygon layer theme categories and their
data sources, selection criteria, and legend dis-
play settings

None

PolylineLabels The specifications for displaying labels on
polylines on the polyline layer

None

PolylineLayer A vector layer that contains polylines MGMapLayer.
LayerType

PolylineLayerDataSources The data sources for the polyline layer features
and the URL of the MapAgent that serves the
data sources

MGMapLayerSetup

PolylineLayerStyle A specification for displaying features on a
polyline layer

MGMapLayerStyle

PolylineLayerStyles Specifications for displaying features on a
polyline layer

MGMapLayer.
MapLayerStyles

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
108 | Chapter 7 Reference

PolylinePostingPosition The label position with respect to a polyline None

PolylineStyle Characteristics of features on a polyline layer MGLineAttr

PolylineThemeCategories The list of theme categories for a polyline layer None

PolylineThemeCategory A theme category for a polyline layer None

PolylineThemeProperties The polyline layer theme categories and their
data sources, selection criteria, and legend dis-
play settings

None

PopupMenu A menu that you can customize for accessing
map window commands

None

Projection The representation of the curved Earth on a flat
map surface

None

Prompt A prompt string, displayed in the status bar, for
selecting the point to digitize

None

RasterLayer An Autodesk MapGuide layer that contains a
pixel-based image, such as a photograph

MGMapLayer.
LayerType

RasterLayerDataSources The data source for raster layer data and the
URL of the MapAgent that serves the data
sources

MGMapLayerSetup

RasterLayerProperties Specifications for retrieving and displaying ras-
ter layer data

MGMapLayer

RasterLayerStyle A specification for displaying a raster image on
the layer

MGMapLayerStyle

RasterStyle Characteristics of a raster image on the raster
layer

None

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
XML Schema Reference | 109

RebuildAfterZoomingIn-
ByFactor

The number of times the user must zoom in
before the layer is automatically rebuilt,
expressed as (number of times)/2

None

RedlineLayer An Autodesk MapGuide layer that contains red-
line markups

MGMapLayer.
LayerType

RedlineLayerProperties The redline layer properties MGMapLayer

RedlineLayerStyle The display range at which the redline layer is
visible

MGMapLayerStyle

RenderTextAs
PolylinesAndPolygons

A control that renders TrueType fonts as text or
graphics

None

Report A specification for the type of data to display
when a user selects map features or digitizes a
point and then runs the report

None

Reports A list of report specifications None

RotX The X rotation datum shift parameter None

RotY The Y rotation datum shift parameter None

RotZ The Z rotation datum shift parameter None

ScaleReductionFactor A scale reduction factor that produces the
smallest possible distance between the projec-
tion surface and any point in the region of the
map

None

SDPFeatureDataSource The SDP (Spatial Data Provider) data source
that contains the features on the layer

MGMapLayerSetup

SecondaryDataSource The optional secondary data source from
which the feature name or URL is derived, or to
which a SQL Where clause is applied

MGDatabaseSetup

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
110 | Chapter 7 Reference

Selectable A control that enables selection of map features
on the layer

MGMapLayer.
Selectability

SendSelectedKeys A control that appends the keys of selected
map features to report queries

None

ServerURL The URL of the server that serves the specified
map or report data

MGMap.Url

MGMapLayerSetup.
ServerUrl

ServerURLData The URL data parameters that are passed with
the HTTP Get/Post request to the report engine

None

ShowInLegend A control that displays or hides the layer label
in the Autodesk MapGuide Viewer legend

MGMapLayer.
ShowInLegend

MGMapLayerGroup.
ShowInLegend

SizeUnits The units for symbol or text size None

SQLSelectStatement A query for the specified data source that filters
the Zoom Goto category

None

SQLWhereClause A valid SQL Where clause that filters the map
features displayed on the map layer

MGMapLayer.
SQLWhere

MGDatabaseSetup.
WhereClause

Static A control that defines the layer as static or
dynamic

MGMapLayer.Dynamic

MGMapLayer.Static

StaticLayerDataStream A data stream containing graphical representa-
tions for a static vector-type layer, such as a
buffer, redline, text, point, polyline, polygon,
DWG, or Autodesk GIS Design Server theme

None

StaticRasterLayerData The specifications for displaying a raster image
on a static raster layer

None

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
XML Schema Reference | 111

StaticRasterLayerDataS-
tream

A data stream containing the raster image for a
static raster layer

None

SymbolDataStream A data stream for a symbol None

SymbolHeight The height of the symbol MGSymbolAttr.Height

SymbolHeightColumn The column that contains the height of point
features

MGDatabaseSetup.
SymbolHeightColumn

SymbolName The name of the symbol that represents the
point in the point layer

MGSymbolAttr.Symbol

SymbolRotation The rotation angle (in degrees) of the symbol MGSymbolAttr.Rotation

SymbolRotationAngle-
Column

The column that contains the rotation angle (in
degrees) for symbols

MGDatabaseSetup.
SymbolAngleColumn

Symbols A list of graphical representations for point
layer features

MGMap.Symbols

SymbolStyleOverrides Changes to the default colors of the symbol None

SymbolWidth The width of the symbol MGSymbolAttr.Width

SymbolWidthColumn The column that contains the width of point
features

MGDatabaseSetup.
SymbolWidthColumn

Table The name of a theme or secondary database
table

MGDatabaseSetup.
Table

TextBackgroundColorIn-
dex

The index for the text background color MGTextAttr.BackColor

TextBackgroundStyle The display mode for the text background MGTextAttr.BackMode

TextColorIndex The index for the text color MGTextAttr.Color

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
112 | Chapter 7 Reference

TextHeight The height of the bounding box around the
opaque text on a layer

MGTextAttr.getHeight

TextHeightColumn The column that contains the height of text
features

MGDatabaseSetup.
TextHeightColumn

TextHorizAlignColumn The column that contains the horizontal align-
ment of text features

MGDatabaseSetup.
TextHorizAlignColumn

TextHorizontalAlignment The horizontal alignment for text MGTextAttr.HorizAlign

TextLayer A vector layer that contains text MGMapLayer.
LayerType

TextLayerDataSources The data sources containing the features used
in the text layer and the URL of the MapAgent
that serves the data sources

MGMapLayerSetup

MGDatabaseSetup

TextLayerStyle A specification for displaying features on a text
layer

MGMapLayerStyle

TextLayerStyles Specifications for displaying features on a text
layer

MGMapLayer.
MapLayerStyles

TextRotation The rotation angle of the text on a layer, in
degrees

MGTextAttr.Rotation

TextRotationAngleCol-
umn

The column that contains the rotation angle (in
degrees) for text

MGDatabaseSetup.
TextAngleColumn

TextStyle Characteristics of features on the text layer MGTextAttr

TextVertAlignColumn The column that contains the vertical align-
ment of text features

MGDatabaseSetup.
TextVertAlignColumn

TextVerticalAlignment The vertical alignment for text MGTextAttr.VertAlign

ThemeValue A value for a theme based on a single value None

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
XML Schema Reference | 113

ThemeValueColumn The name of the column in the theme table
that contains a value for this theme

None

ThemeValueColumnType The data type of the theme value column None

ToWGS84 Specification to assign the Autodesk MapGuide
default lat/long coordinate system to the map

None

TrackingID The user-defined tracking ID MGMap.TrackingID

UnitsCode A code that defines the units (feet, miles, etc.)
used by a coordinate system

MGMap.DisplayUnits

UnitsScaleFactor A multiplicative scale factor that facilitates con-
version of coordinate system units to meters

MGMap.
McsScaleFactor

URLColumn The name of the column that contains the URL
associated with each map feature

MGDatabaseSetup.
UrlLinkColumn (OLE &
SDP)

MGDwgDataSources.
UrlColumn (DWG)

URLSource A control that specifies where to derive the URL
source

MGMapLayerSetup.
URLFromSdpFeature
Table

URLTable The table that contains the URLs for DWG layer
features

MGDwgDataSources.
UrlTable

ViewDistanceCalculation The calculation method for the View Distance
command

None

Visible A control that enables or disables visibility of
map features on a layer

MGMapLayer.Visibility

MGMapLayerGroup.
Visibility

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
114 | Chapter 7 Reference

The following table maps schema element-specific attributes to Autodesk
MapGuide Viewer API properties:

ZoomGotoAddress A Zoom Goto address category that includes
the information that Autodesk MapGuide
Server requires to look up addresses in geocod-
ing files

None

ZoomGotoLocation A Zoom Goto location category that includes
the information required by Autodesk
MapGuide Server to look up locations in a data
source

None

ZoomGotos A list of Zoom Goto specifications None

Schema Element-Specific Attributes

Schema Element Attribute Description Viewer API Property

CSMap Code The coordinate system code None

Datum Code The datum code None

Ellipsoid Code The ellipsoid code None

ForLayer Name The name of the layer to which
the report is linked

None

ForLayer Parameter The URL parameter name to use
when sending the feature keys
to the report engine

None

ImageExtent XMin The minimum X coordinate of
the image extent

MGExtent.MinLon

ImageExtent YMin The minimum Y coordinate of
the image extent

MGExtent.MinLat

Map of Schema and Autodesk MapGuide Viewer Names (continued)

Schema Element Description API Object,
Method, or
Property
XML Schema Reference | 115

ImageExtent XMax The maximum X coordinate of
the image extent

MGExtent.MaxLon

ImageExtent YMax The maximum Y coordinate of
the image extent

MGExtent.MaxLat

ImageSize Width The image width, in pixels None

ImageSize Height The image height, in pixels None

MapCenter Latitude The latitude or Y coordinate of
the center point of the map

MGMap.Lat

MapCenter Longitude The longitude or X coordinate of
the center point of the map

MGMap.Lon

MapSize Width The width of the map MGMap.MapWidth

MapSize Height The height of the map MGMap.MapHeight

MapWindow Version The version of the Autodesk
MapGuide map window file

None

MapWindow CreatedBy The name and version of the
product that created the
Autodesk MapGuide map win-
dow file

None

MenuItem Name The name of the menu item None

MenuItem Action The task that the selected menu
item performs when the user
chooses that menu item

None

MenuItem Arguments The arguments to use with the
selected action for the menu
item

None

PointThemeProperties Type The type of point theme None

PolygonThemeProperties Type The type of polygon theme None

Schema Element-Specific Attributes (continued)

Schema Element Attribute Description Viewer API Property
116 | Chapter 7 Reference

PolylineThemeProperties Type The type of polyline theme None

PopupMenu Name The name of the popup menu None

Projection Code The projection code None

TrackingID AccessFrom
ViewerAPI

The type of access the Viewer
API has to the Tracking ID

None

Schema Element-Specific Attributes (continued)

Schema Element Attribute Description Viewer API Property
XML Schema Reference | 117

118

Index

A
accessing layers 51
acronyms 14
Active Server Pages (ASP)

for developing applications 22
use in example application 27

adding
layers to groups 49
layers to maps 48
map layers 60, 67
popup menus 67, 72
reports 67
styles 56
themes 59
Zoom Gotos 69

application coding design 26
application examples

customizing 23
Example 1, creating dynamic maps 10–11
Example 2, creating dynamic map layers 10,

12
Example 3, substituting map settings 10, 12
Example 4, infinite zoom 10, 13
Help for 23
using 27

application servers, supported 20
applications for Dynamic Authoring Toolkit 10–

13
applying themes 12
attributes, schema element 115–117
Autodesk MapGuide Author

adding or changing passwords 51
creating a map library 44–45
creating a Zoom Goto 69
creating popup menu 71
identifying version to use 42
representing maps as XML 30
use in authoring dynamic maps 22
using for themes 12
using to locate schema elements 32
version number 87

Autodesk MapGuide Viewer
downloading programmatically 76
types of 19

Autodesk MapGuide Viewer API property,
mapped to schema attributes 115–117

B
base map, using 46
binary streams

returning maps as 77–79
See also data stream

building and returning the map 77

C
changing

data sources attributes 54
general layer properties 50
symbols 63

character encoding, UTF-8 or UTF-16 38, 95
CharacterEncoding property 85
client, Autodesk MapGuide Viewer 19
coding the application 27
ColdFusion Markup Language (CFML) 28
ColdFusion Server 20
ColdFusion Studio

error handling with 28
for developing applications 22
tags, use in application example 27
use in authoring dynamic maps 22

color of symbols, overriding 65
composites, creating map 44
compressing, MLF and MWF files 40
CompressMlf property 85
CompressMwf property 86
controlling

layer access 51
views 72

conversion examples
MWF to MWX 38–39
MWX to MLF 41
MWX to MWF 40

converting
from MWF to MWX 38
from MWX to MLF 41
from MWX to MWF 39

coordinate systems
identifying elements of 46
working with 46

copying code examples 8
CreatedBy property 42, 87
119

creating
dynamic map layers 12
interview forms 75
library of map elements 44
map composites 44
map elements, procedure for 45
map templates 44
maps as binary streams 77–79
popup menus 71
user interface 75
XML files for reports 66
XML files for Zoom Gotos 68
See also interview forms, developing

Creating Dynamic Map Layers, Example 2 10, 12
Creating Dynamic Maps, Example 1 10–11
customizing

application examples 23
maps 46

D
data sources

attributes, changing 54
cannot create with Dynamic Authoring

Toolkit 20
for layers and Zoom Gotos, identifying 51–

52
for maps and reports 20
interpreting specifications for 53
working with 51

data stream, returning dynamic map as 77–79
delivery of maps 74
designing applications 26
developing

applications 22
interview forms 75

development applications 22
development environment 21–22
displaying dynamic maps 76
documentation 8
DOM tools 22
downloading Autodesk MapGuide Viewer 76

E
editing tools, XML 22
editing XML 34
elements

of layer, identifying 47, 58
of layers, identifying 55
of map, procedure for creating 45
of schema 98–115
of schema, locating 32

embedding maps in Web pages 76
encoding, of characters 38

environment
for development 21–22
for operation 18–20

error codes 95–97
error handling 28

with ColdFusion Studio 28
with VBScript 28
with Visual Basic 28

example applications. See application examples
example code

MWF to MWX 38–39
MWX to MLF 41
MWX to MWF 40
XML parser 35

F
files

converting, MWF to MWX 38–39
converting, MWX to MWF or MLF 39–42
installed with Dynamic Authoring Toolkit

17
validating 36
validation of MWX 40

G
groups

adding layers to 49
of layers 47–51

H
handling errors 28
Help

for application examples 23
for schema 33
launching 8–9

I
identifying

coordinate system elements 46
layer and Zoom Goto data sources 51–52
layer elements 47, 55, 58
popup menu elements 66, 68, 71
report elements 66
style elements 55
symbol elements 63
theme data sources 52
theme elements 58
Zoom Goto elements 68

infinite zoom range 13
Infinite Zoom, Example 4 10, 13
120 | Index

installed files 17
installing the Dynamic Authoring Toolkit 16–17
intermediate map file, using 79
interpreting data source specifications 53
interview forms, developing 75

J
Java Server Pages (JSP) 22

L
language, programming 27
layer data sources, identifying 51–52
layers

adding to groups 49
adding to maps 48
changing general properties of 50
controlling access 51
creating dynamic 12, 58
elements of, identifying 47, 55, 58
groups of 47–51
procedure for adding 60, 67
returning 80
saving as MLF 50

library of map elements, creating 44

M
map layers. See layers
maps

building and returning 77
creating elements of 45
creating templates for 44
customizing 46
delivering 74
displaying and embedding 76
library of, creating 44

menus, popup
creating 71
working with 70

methods
list of 89
ReadFromMwf 89
ReadFromMwx 90
WriteToMlf 91
WriteToMlfStream 92
WriteToMwf 92
WriteToMwfStream 93
WriteToMwx 94

MIME types
registered 17
setting 76

MLF
compressing 40
intermediate, using 79
saving layer as 50

modifying
data sources 54
general layer properties 50

MWF
compressing 40
intermediate, using 79
portability 12
to MWX conversion example 38–39

MWX
format 9
handling large 34
to MLF conversion example 41
to MWF conversion example 40
validating 40

O
OLE DB data servers 20
online Help. See Help
operating environment 18–20
overriding symbol color 65

P
parser

Microsoft MSXML installation 18
Microsoft MSXML SDK 22
using to validate MWX files 37
XML 34
XML example 35

passwords
adding or changing 51

platform requirements 16
popup menus

adding 67, 72
creating 71
identifying elements of 66, 68, 71
working with 70

portability of MWF 12
programming language 27
properties

list of 84
CharacterEncoding 85
CompressMlf 85
CompressMwf 86
CreatedBy 42, 87
of layer (general), changing 50
ValidateMwx 87
Version 42, 88
Index | 121

R
ReadFromMwf method 89
ReadFromMwx method 36, 37, 90
reports

adding 67–68
creating XML for 66
identifying elements of 66
working with 65

requirements, platform 16
resolveExternals property, DOM 37

S
sample applications. See examples
saving layers as MLF 50
schema

elements of 98–115
elements, attributes of 115–117
reference 98–117
structure 31–32

scripts
Autodesk MapGuide Viewer 81
creating with ColdFusion 20
server, for layer 80

setting MIME types 76
specifications of data source, interpreting 53
specifying

character encoding 38
data sources 54
symbols 63

structured storage 31
styles

adding 56
identifying elements of 55
working with 54

stylesheets 30
Substituting Map Settings, Example 3 10, 12
support applications 22
symbols

changing 63
identifying elements of 63
overriding color 65
working with 62

T
text editor, using 34
themes

adding 59
applying 12
identifying data sources 52
identifying elements of 58
working with 58

tools, DOM 22

U
user interface, developing 75
UTF-8 and UTF-16 character encoding 95
utilities, Autodesk MapGuide 22

V
ValidateMwx property 36, 37, 87
validating files

MWX 40
using Dynamic Authoring Toolkit 36
using parser 37
XML documents 36

VBScript
error handling with 28

Version property 42, 88
versions, working with 42
viewer types 19
viewers

automatically downloading 76
See also Autodesk MapGuide Viewer

views, controlling 72
Visual Basic

error handling with 28
use in example application 27

W
Web servers 19
WriteToMlf method 91
WriteToMlfStream method 92
WriteToMwf method 92
WriteToMwfStream method 93
WriteToMwx method 94
writing

Autodesk MapGuide Viewer scripts 81
server scripts, for layers 80
122 | Index

X
XML

creating or changing maps using 77
editing 34
editing tools 22
for reports, creating 66
for Zoom Gotos, creating 68
parser example 35
parser, using 34
parser, using to create and change maps 77
stylesheets 30
using documents 30
validating 36
See also MWX

XSLT 18, 30

Z
Zoom Gotos

adding 69
creating XML for 68
identifying data sources for 51–52
identifying elements of 68
working with 68

zoom limits, extending 13
Index | 123

	Autodesk MapGuide® Release 6 Dynamic Authoring Toolkit
	Overview of the Dynamic Authoring Toolkit
	About This Document
	Documentation Assumptions
	Copying Text from This Document

	Online Help
	Introducing the MWX Format
	What Is the Dynamic Authoring Toolkit
	Common Applications
	Creating Dynamic Maps
	Creating Dynamic Map Layers
	Substituting Map Settings
	Infinite Zoom
	Cataloging Map Information

	Useful Acronyms

	Setting Up the Development Environment
	Installing the Dynamic Authoring Toolkit
	System Requirements
	Installation Procedure
	Installed Files
	MSXML Parser Installation

	Understanding the Operating Environment
	Clients
	Web Servers
	Application Servers
	Data Servers and Data Sources

	Understanding the Development Environment
	Development Applications
	Data Utilities
	DOM Data and Editing Tools

	Getting Started

	Developing an Application
	Designing the Application
	Coding the Application
	Choosing a Development Platform
	Leveraging the Application Examples

	Handling Errors
	Active Server Pages
	ColdFusion
	Visual Basic

	Working with XML
	Using XML Documents
	Understanding the Schema Structure
	Using the Schema
	Locating Schema Elements
	Viewing the Schema

	Editing XML Documents
	Using a Text Editor
	Using an XML Parser
	Working with Large MWX Files
	XML Parser Example

	Validating XML Documents
	Validating Files Using the Dynamic Authoring Toolkit
	Validating Files Using a Parser

	Converting File Formats
	Converting from MWF to MWX
	Converting from MWX to MWF or MLF

	Working with Product Versions
	CreatedBy
	Version

	Authoring Dynamic Maps
	Creating a Map Library
	Creating Map Templates and Composites
	Creating a Library of Map Components

	Customizing Maps
	Working with Coordinate Systems
	Working with Layers and Layer Groups
	Working with Data Sources
	Working with Styles
	Working with Themes
	Working with Symbols
	Working with Reports
	Working with Zoom Gotos
	Working with Popup Menus

	Delivering Dynamic Maps
	Understanding the Map Delivery Process
	Developing an Interview Form
	Displaying a Dynamic Map
	Setting the MIME Type
	Embedding a Map

	Building and Returning the Map
	Working with XML Documents
	Returning a Binary Stream
	Using an Intermediate File

	Returning Map Layers
	Writing Server Scripts
	Writing Autodesk MapGuide Viewer Scripts

	Reference
	Dynamic Authoring Toolkit API
	MapWindowFile Object
	Properties
	Methods
	Enumerations
	Error Codes

	XML Schema Reference

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

